train_sampling_multi_gpu.py 10.9 KB
Newer Older
1
2
3
4
5
6
7
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
8
from torch.utils.data import DataLoader
9
10
11
12
13
14
15
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from dgl.data import RedditDataset
from torch.nn.parallel import DistributedDataParallel
import tqdm
16
import traceback
17

18
19
from utils import thread_wrapped_func

20
21
22
23
24
25
26
27
28
29
30
31
32
class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
33
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
34
        for i in range(1, n_layers - 1):
35
36
37
38
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation
39
40
41

    def forward(self, blocks, x):
        h = x
42
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
43
44
45
46
            # We need to first copy the representation of nodes on the RHS from the
            # appropriate nodes on the LHS.
            # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
            # would be (num_nodes_RHS, D)
47
            h_dst = h[:block.number_of_dst_nodes()]
48
49
50
            # Then we compute the updated representation on the RHS.
            # The shape of h now becomes (num_nodes_RHS, D)
            h = layer(block, (h, h_dst))
51
52
53
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = th.arange(g.number_of_nodes())
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)

74
75
76
77
78
79
80
81
82
83
84
85
            sampler = dgl.sampling.MultiLayerNeighborSampler([None])
            dataloader = dgl.sampling.NodeDataLoader(
                g,
                th.arange(g.number_of_nodes()),
                sampler,
                batch_size=args.batch_size,
                shuffle=True,
                drop_last=False,
                num_workers=args.num_workers)

            for input_nodes, output_nodes, blocks in tqdm.tqdm(dataloader):
                block = blocks[0]
86

87
                h = x[input_nodes].to(device)
88
                h_dst = h[:block.number_of_dst_nodes()]
89
                h = layer(block, (h, h_dst))
90
91
92
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)
93

94
                y[output_nodes] = h.cpu()
95
96
97
98

            x = y
        return y

99
100
101
102
103
104
105
106
107
108
109
110
def prepare_mp(g):
    """
    Explicitly materialize the CSR, CSC and COO representation of the given graph
    so that they could be shared via copy-on-write to sampler workers and GPU
    trainers.

    This is a workaround before full shared memory support on heterogeneous graphs.
    """
    g.in_degree(0)
    g.out_degree(0)
    g.find_edges([0])

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, inputs, labels, val_mask, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_mask], labels[val_mask])

133
def load_subtensor(g, labels, seeds, input_nodes, dev_id):
134
135
136
    """
    Copys features and labels of a set of nodes onto GPU.
    """
137
    batch_inputs = g.ndata['features'][input_nodes].to(dev_id)
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    batch_labels = labels[seeds].to(dev_id)
    return batch_inputs, batch_labels

#### Entry point

def run(proc_id, n_gpus, args, devices, data):
    # Start up distributed training, if enabled.
    dev_id = devices[proc_id]
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        th.distributed.init_process_group(backend="nccl",
                                          init_method=dist_init_method,
                                          world_size=world_size,
153
                                          rank=proc_id)
154
155
156
157
158
159
160
161
162
163
    th.cuda.set_device(dev_id)

    # Unpack data
    train_mask, val_mask, in_feats, labels, n_classes, g = data
    train_nid = th.LongTensor(np.nonzero(train_mask)[0])
    val_nid = th.LongTensor(np.nonzero(val_mask)[0])
    train_mask = th.BoolTensor(train_mask)
    val_mask = th.BoolTensor(val_mask)

    # Split train_nid
164
    train_nid = th.split(train_nid, len(train_nid) // n_gpus)[proc_id]
165

166
    # Create PyTorch DataLoader for constructing blocks
167
168
169
170
171
172
    sampler = dgl.sampling.MultiLayerNeighborSampler(
        [int(fanout) for fanout in args.fan_out.split(',')])
    dataloader = dgl.sampling.NodeDataLoader(
        g,
        train_nid,
        sampler,
173
174
175
        batch_size=args.batch_size,
        shuffle=True,
        drop_last=False,
176
        num_workers=args.num_workers)
177
178

    # Define model and optimizer
179
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
180
181
182
183
184
185
186
187
188
189
190
191
    model = model.to(dev_id)
    if n_gpus > 1:
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(dev_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
        tic = time.time()
192
193
194

        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
195
        for step, (input_nodes, seeds, blocks) in enumerate(dataloader):
196
197
198
199
            if proc_id == 0:
                tic_step = time.time()

            # Load the input features as well as output labels
200
            batch_inputs, batch_labels = load_subtensor(g, labels, seeds, input_nodes, dev_id)
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

            # Compute loss and prediction
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            optimizer.zero_grad()
            loss.backward()

            if n_gpus > 1:
                for param in model.parameters():
                    if param.requires_grad and param.grad is not None:
                        th.distributed.all_reduce(param.grad.data,
                                                  op=th.distributed.ReduceOp.SUM)
                        param.grad.data /= n_gpus
            optimizer.step()

            if proc_id == 0:
                iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
            if step % args.log_every == 0 and proc_id == 0:
                acc = compute_acc(batch_pred, batch_labels)
220
221
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format(
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), th.cuda.max_memory_allocated() / 1000000))
222
223
224
225
226
227
228
229
230
231

        if n_gpus > 1:
            th.distributed.barrier()

        toc = time.time()
        if proc_id == 0:
            print('Epoch Time(s): {:.4f}'.format(toc - tic))
            if epoch >= 5:
                avg += toc - tic
            if epoch % args.eval_every == 0 and epoch != 0:
232
                if n_gpus == 1:
233
                    eval_acc = evaluate(model, g, g.ndata['features'], labels, val_mask, args.batch_size, devices[0])
234
                else:
235
                    eval_acc = evaluate(model.module, g, g.ndata['features'], labels, val_mask, args.batch_size, devices[0])
236
237
                print('Eval Acc {:.4f}'.format(eval_acc))

238

239
240
241
242
243
244
245
    if n_gpus > 1:
        th.distributed.barrier()
    if proc_id == 0:
        print('Avg epoch time: {}'.format(avg / (epoch - 4)))

if __name__ == '__main__':
    argparser = argparse.ArgumentParser("multi-gpu training")
246
247
    argparser.add_argument('--gpu', type=str, default='0',
        help="Comma separated list of GPU device IDs.")
248
249
250
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
251
    argparser.add_argument('--fan-out', type=str, default='10,25')
252
253
254
255
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
256
257
258
    argparser.add_argument('--dropout', type=float, default=0.5)
    argparser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    args = argparser.parse_args()
    
    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # load reddit data
    data = RedditDataset(self_loop=True)
    train_mask = data.train_mask
    val_mask = data.val_mask
    features = th.Tensor(data.features)
    in_feats = features.shape[1]
    labels = th.LongTensor(data.labels)
    n_classes = data.num_labels
    # Construct graph
    g = dgl.graph(data.graph.all_edges())
    g.ndata['features'] = features
275
    prepare_mp(g)
276
277
278
279
280
281
282
283
    # Pack data
    data = train_mask, val_mask, in_feats, labels, n_classes, g

    if n_gpus == 1:
        run(0, n_gpus, args, devices, data)
    else:
        procs = []
        for proc_id in range(n_gpus):
284
285
            p = mp.Process(target=thread_wrapped_func(run),
                           args=(proc_id, n_gpus, args, devices, data))
286
287
288
289
            p.start()
            procs.append(p)
        for p in procs:
            p.join()