train_sampling_multi_gpu.py 12.7 KB
Newer Older
1
2
3
4
5
6
7
import dgl
import numpy as np
import torch as th
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torch.multiprocessing as mp
8
from torch.utils.data import DataLoader
9
10
11
12
13
14
15
16
17
import dgl.function as fn
import dgl.nn.pytorch as dglnn
import time
import argparse
from _thread import start_new_thread
from functools import wraps
from dgl.data import RedditDataset
from torch.nn.parallel import DistributedDataParallel
import tqdm
18
import traceback
19
20
21
22
23
24
25
26
27

#### Neighbor sampler

class NeighborSampler(object):
    def __init__(self, g, fanouts):
        self.g = g
        self.fanouts = fanouts

    def sample_blocks(self, seeds):
28
        seeds = th.LongTensor(np.asarray(seeds))
29
30
31
        blocks = []
        for fanout in self.fanouts:
            # For each seed node, sample ``fanout`` neighbors.
32
            frontier = dgl.sampling.sample_neighbors(g, seeds, fanout, replace=True)
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
            # Then we compact the frontier into a bipartite graph for message passing.
            block = dgl.to_block(frontier, seeds)
            # Obtain the seed nodes for next layer.
            seeds = block.srcdata[dgl.NID]

            blocks.insert(0, block)
        return blocks

class SAGE(nn.Module):
    def __init__(self,
                 in_feats,
                 n_hidden,
                 n_classes,
                 n_layers,
                 activation,
                 dropout):
        super().__init__()
        self.n_layers = n_layers
        self.n_hidden = n_hidden
        self.n_classes = n_classes
        self.layers = nn.ModuleList()
54
        self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean'))
55
        for i in range(1, n_layers - 1):
56
57
58
59
            self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean'))
        self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean'))
        self.dropout = nn.Dropout(dropout)
        self.activation = activation
60
61
62

    def forward(self, blocks, x):
        h = x
63
        for l, (layer, block) in enumerate(zip(self.layers, blocks)):
64
65
66
67
            # We need to first copy the representation of nodes on the RHS from the
            # appropriate nodes on the LHS.
            # Note that the shape of h is (num_nodes_LHS, D) and the shape of h_dst
            # would be (num_nodes_RHS, D)
68
            h_dst = h[:block.number_of_dst_nodes()]
69
70
71
            # Then we compute the updated representation on the RHS.
            # The shape of h now becomes (num_nodes_RHS, D)
            h = layer(block, (h, h_dst))
72
73
74
            if l != len(self.layers) - 1:
                h = self.activation(h)
                h = self.dropout(h)
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
        return h

    def inference(self, g, x, batch_size, device):
        """
        Inference with the GraphSAGE model on full neighbors (i.e. without neighbor sampling).
        g : the entire graph.
        x : the input of entire node set.

        The inference code is written in a fashion that it could handle any number of nodes and
        layers.
        """
        # During inference with sampling, multi-layer blocks are very inefficient because
        # lots of computations in the first few layers are repeated.
        # Therefore, we compute the representation of all nodes layer by layer.  The nodes
        # on each layer are of course splitted in batches.
        # TODO: can we standardize this?
        nodes = th.arange(g.number_of_nodes())
        for l, layer in enumerate(self.layers):
            y = th.zeros(g.number_of_nodes(), self.n_hidden if l != len(self.layers) - 1 else self.n_classes)

            for start in tqdm.trange(0, len(nodes), batch_size):
                end = start + batch_size
                batch_nodes = nodes[start:end]
                block = dgl.to_block(dgl.in_subgraph(g, batch_nodes), batch_nodes)
99
                input_nodes = block.srcdata[dgl.NID]
100

101
                h = x[input_nodes].to(device)
102
                h_dst = h[:block.number_of_dst_nodes()]
103
                h = layer(block, (h, h_dst))
104
105
106
                if l != len(self.layers) - 1:
                    h = self.activation(h)
                    h = self.dropout(h)
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

                y[start:end] = h.cpu()

            x = y
        return y

#### Miscellaneous functions

# According to https://github.com/pytorch/pytorch/issues/17199, this decorator
# is necessary to make fork() and openmp work together.
#
# TODO: confirm if this is necessary for MXNet and Tensorflow.  If so, we need
# to standardize worker process creation since our operators are implemented with
# OpenMP.
def thread_wrapped_func(func):
    """
    Wraps a process entry point to make it work with OpenMP.
    """
    @wraps(func)
    def decorated_function(*args, **kwargs):
        queue = mp.Queue()
        def _queue_result():
            exception, trace, res = None, None, None
            try:
                res = func(*args, **kwargs)
            except Exception as e:
                exception = e
                trace = traceback.format_exc()
            queue.put((res, exception, trace))

        start_new_thread(_queue_result, ())
        result, exception, trace = queue.get()
        if exception is None:
            return result
        else:
            assert isinstance(exception, Exception)
            raise exception.__class__(trace)
    return decorated_function

146
147
148
149
150
151
152
153
154
155
156
157
def prepare_mp(g):
    """
    Explicitly materialize the CSR, CSC and COO representation of the given graph
    so that they could be shared via copy-on-write to sampler workers and GPU
    trainers.

    This is a workaround before full shared memory support on heterogeneous graphs.
    """
    g.in_degree(0)
    g.out_degree(0)
    g.find_edges([0])

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def compute_acc(pred, labels):
    """
    Compute the accuracy of prediction given the labels.
    """
    return (th.argmax(pred, dim=1) == labels).float().sum() / len(pred)

def evaluate(model, g, inputs, labels, val_mask, batch_size, device):
    """
    Evaluate the model on the validation set specified by ``val_mask``.
    g : The entire graph.
    inputs : The features of all the nodes.
    labels : The labels of all the nodes.
    val_mask : A 0-1 mask indicating which nodes do we actually compute the accuracy for.
    batch_size : Number of nodes to compute at the same time.
    device : The GPU device to evaluate on.
    """
    model.eval()
    with th.no_grad():
        pred = model.inference(g, inputs, batch_size, device)
    model.train()
    return compute_acc(pred[val_mask], labels[val_mask])

180
def load_subtensor(g, labels, seeds, input_nodes, dev_id):
181
182
183
    """
    Copys features and labels of a set of nodes onto GPU.
    """
184
    batch_inputs = g.ndata['features'][input_nodes].to(dev_id)
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    batch_labels = labels[seeds].to(dev_id)
    return batch_inputs, batch_labels

#### Entry point

def run(proc_id, n_gpus, args, devices, data):
    # Start up distributed training, if enabled.
    dev_id = devices[proc_id]
    if n_gpus > 1:
        dist_init_method = 'tcp://{master_ip}:{master_port}'.format(
            master_ip='127.0.0.1', master_port='12345')
        world_size = n_gpus
        th.distributed.init_process_group(backend="nccl",
                                          init_method=dist_init_method,
                                          world_size=world_size,
                                          rank=dev_id)
    th.cuda.set_device(dev_id)

    # Unpack data
    train_mask, val_mask, in_feats, labels, n_classes, g = data
    train_nid = th.LongTensor(np.nonzero(train_mask)[0])
    val_nid = th.LongTensor(np.nonzero(val_mask)[0])
    train_mask = th.BoolTensor(train_mask)
    val_mask = th.BoolTensor(val_mask)

    # Split train_nid
    train_nid = th.split(train_nid, len(train_nid) // n_gpus)[dev_id]

    # Create sampler
214
215
216
217
218
219
220
221
222
    sampler = NeighborSampler(g, [int(fanout) for fanout in args.fan_out.split(',')])

    # Create PyTorch DataLoader for constructing blocks
    dataloader = DataLoader(
        dataset=train_nid.numpy(),
        batch_size=args.batch_size,
        collate_fn=sampler.sample_blocks,
        shuffle=True,
        drop_last=False,
223
        num_workers=args.num_workers)
224
225

    # Define model and optimizer
226
    model = SAGE(in_feats, args.num_hidden, n_classes, args.num_layers, F.relu, args.dropout)
227
228
229
230
231
232
233
234
235
236
237
238
    model = model.to(dev_id)
    if n_gpus > 1:
        model = DistributedDataParallel(model, device_ids=[dev_id], output_device=dev_id)
    loss_fcn = nn.CrossEntropyLoss()
    loss_fcn = loss_fcn.to(dev_id)
    optimizer = optim.Adam(model.parameters(), lr=args.lr)

    # Training loop
    avg = 0
    iter_tput = []
    for epoch in range(args.num_epochs):
        tic = time.time()
239
240
241
242

        # Loop over the dataloader to sample the computation dependency graph as a list of
        # blocks.
        for step, blocks in enumerate(dataloader):
243
244
245
            if proc_id == 0:
                tic_step = time.time()

246
247
248
249
250
            # The nodes for input lies at the LHS side of the first block.
            # The nodes for output lies at the RHS side of the last block.
            input_nodes = blocks[0].srcdata[dgl.NID]
            seeds = blocks[-1].dstdata[dgl.NID]

251
            # Load the input features as well as output labels
252
            batch_inputs, batch_labels = load_subtensor(g, labels, seeds, input_nodes, dev_id)
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

            # Compute loss and prediction
            batch_pred = model(blocks, batch_inputs)
            loss = loss_fcn(batch_pred, batch_labels)
            optimizer.zero_grad()
            loss.backward()

            if n_gpus > 1:
                for param in model.parameters():
                    if param.requires_grad and param.grad is not None:
                        th.distributed.all_reduce(param.grad.data,
                                                  op=th.distributed.ReduceOp.SUM)
                        param.grad.data /= n_gpus
            optimizer.step()

            if proc_id == 0:
                iter_tput.append(len(seeds) * n_gpus / (time.time() - tic_step))
            if step % args.log_every == 0 and proc_id == 0:
                acc = compute_acc(batch_pred, batch_labels)
272
273
                print('Epoch {:05d} | Step {:05d} | Loss {:.4f} | Train Acc {:.4f} | Speed (samples/sec) {:.4f} | GPU {:.1f} MiB'.format(
                    epoch, step, loss.item(), acc.item(), np.mean(iter_tput[3:]), th.cuda.max_memory_allocated() / 1000000))
274
275
276
277
278
279
280
281
282
283

        if n_gpus > 1:
            th.distributed.barrier()

        toc = time.time()
        if proc_id == 0:
            print('Epoch Time(s): {:.4f}'.format(toc - tic))
            if epoch >= 5:
                avg += toc - tic
            if epoch % args.eval_every == 0 and epoch != 0:
284
285
286
287
                if n_gpus == 1:
                    eval_acc = evaluate(model, g, g.ndata['features'], labels, val_mask, args.batch_size, 0)
                else:
                    eval_acc = evaluate(model.module, g, g.ndata['features'], labels, val_mask, args.batch_size, 0)
288
289
                print('Eval Acc {:.4f}'.format(eval_acc))

290

291
292
293
294
295
296
297
    if n_gpus > 1:
        th.distributed.barrier()
    if proc_id == 0:
        print('Avg epoch time: {}'.format(avg / (epoch - 4)))

if __name__ == '__main__':
    argparser = argparse.ArgumentParser("multi-gpu training")
298
299
    argparser.add_argument('--gpu', type=str, default='0',
        help="Comma separated list of GPU device IDs.")
300
301
302
    argparser.add_argument('--num-epochs', type=int, default=20)
    argparser.add_argument('--num-hidden', type=int, default=16)
    argparser.add_argument('--num-layers', type=int, default=2)
303
    argparser.add_argument('--fan-out', type=str, default='10,25')
304
305
306
307
    argparser.add_argument('--batch-size', type=int, default=1000)
    argparser.add_argument('--log-every', type=int, default=20)
    argparser.add_argument('--eval-every', type=int, default=5)
    argparser.add_argument('--lr', type=float, default=0.003)
308
309
310
    argparser.add_argument('--dropout', type=float, default=0.5)
    argparser.add_argument('--num-workers', type=int, default=0,
        help="Number of sampling processes. Use 0 for no extra process.")
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    args = argparser.parse_args()
    
    devices = list(map(int, args.gpu.split(',')))
    n_gpus = len(devices)

    # load reddit data
    data = RedditDataset(self_loop=True)
    train_mask = data.train_mask
    val_mask = data.val_mask
    features = th.Tensor(data.features)
    in_feats = features.shape[1]
    labels = th.LongTensor(data.labels)
    n_classes = data.num_labels
    # Construct graph
    g = dgl.graph(data.graph.all_edges())
    g.ndata['features'] = features
327
    prepare_mp(g)
328
329
330
331
332
333
334
335
    # Pack data
    data = train_mask, val_mask, in_feats, labels, n_classes, g

    if n_gpus == 1:
        run(0, n_gpus, args, devices, data)
    else:
        procs = []
        for proc_id in range(n_gpus):
336
337
            p = mp.Process(target=thread_wrapped_func(run),
                           args=(proc_id, n_gpus, args, devices, data))
338
339
340
341
            p.start()
            procs.append(p)
        for p in procs:
            p.join()