"vscode:/vscode.git/clone" did not exist on "53a525bf33564fc164365eb7eab5d5e3a8b061df"
test_heterograph.py 77.3 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
from dgl.heterograph_index import joint_union
12
from utils import parametrize_dtype
13

14
def create_test_heterograph(index_dtype):
15
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
16
17
18
19
20
21
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
22
23

    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
Minjie Wang's avatar
Minjie Wang committed
24
25
26
27
28
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
29

30
31
32
33
34
35
36
37
    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows', index_dtype=index_dtype)
    plays_g = dgl.bipartite(plays_spmat, 'user', 'plays', 'game', index_dtype=index_dtype)
    wishes_g = dgl.bipartite(wishes_nx, 'user', 'wishes', 'game', index_dtype=index_dtype)
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game', index_dtype=index_dtype)
    assert follows_g._idtype_str == index_dtype
    assert plays_g._idtype_str == index_dtype
    assert wishes_g._idtype_str == index_dtype
    assert develops_g._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
38
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
39
    assert g._idtype_str == index_dtype
40
41
    return g

42
def create_test_heterograph1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
43
44
45
46
47
48
49
50
51
52
53
54
    edges = []
    edges.extend([(0,1), (1,2)])  # follows
    edges.extend([(0,3), (1,3), (2,4), (1,4)])  # plays
    edges.extend([(0,4), (2,3)])  # wishes
    edges.extend([(5,3), (6,4)])  # develops
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
    g0 = dgl.graph(edges)
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
    return dgl.to_hetero(g0, ['user', 'game', 'developer'], ['follows', 'plays', 'wishes', 'develops'])

55
def create_test_heterograph2(index_dtype):
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game')

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): plays_spmat,
        ('user', 'wishes', 'game'): wishes_nx,
        ('developer', 'develops', 'game'): develops_g,
        })
    return g

72
def create_test_heterograph3(index_dtype):
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)

    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows', _restrict_format='coo')
    plays_g = dgl.bipartite(
        [(0, 0), (1, 0), (2, 1), (1, 1)], 'user', 'plays', 'game', _restrict_format='coo')
    wishes_g = dgl.bipartite([(0, 1), (2, 0)], 'user', 'wishes', 'game', _restrict_format='coo')
    develops_g = dgl.bipartite(
        [(0, 0), (1, 1)], 'developer', 'develops', 'game', _restrict_format='coo')
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
    return g

Minjie Wang's avatar
Minjie Wang committed
89
90
91
def get_redfn(name):
    return getattr(F, name)

92
93
94
95
96
@parametrize_dtype
def test_create(index_dtype):
    g0 = create_test_heterograph(index_dtype)
    g1 = create_test_heterograph1(index_dtype)
    g2 = create_test_heterograph2(index_dtype)
97
98
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112

    # create from nx complete bipartite graph
    nxg = nx.complete_bipartite_graph(3, 4)
    g = dgl.bipartite(nxg, 'user', 'plays', 'game')
    assert g.ntypes == ['user', 'game']
    assert g.etypes == ['plays']
    assert g.number_of_edges() == 12

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
    g = dgl.graph(spmat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 3

113
114
115
116
117
118
119
120
121
122
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
        ('l0', 'e0', 'l1'): [(0, 1), (0, 2)],
        ('l0', 'e1', 'l2'): [(2, 2)],
        ('l2', 'e2', 'l2'): [(1, 1), (3, 3)],
        })
    assert g.number_of_nodes('l0') == 3
    assert g.number_of_nodes('l1') == 3
    assert g.number_of_nodes('l2') == 4

123
124
125
126
127
128
    # test if validate flag works
    # homo graph
    fail = False
    try:
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
129
            num_nodes=2,
130
131
132
133
134
135
136
137
138
139
140
141
            validate=True
        )
    except DGLError:
        fail = True
    finally:
        assert fail, "should catch a DGLError because node ID is out of bound."
    # bipartite graph
    def _test_validate_bipartite(card):
        fail = False
        try:
            g = dgl.bipartite(
                ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3]),
142
                num_nodes=card,
143
144
145
146
147
148
149
150
151
152
                validate=True
            )
        except DGLError:
            fail = True
        finally:
            assert fail, "should catch a DGLError because node ID is out of bound."

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

153
154
155
@parametrize_dtype
def test_query(index_dtype):
    g = create_test_heterograph(index_dtype)
156
157

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
158
    canonical_etypes = [
159
160
161
162
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
163
    etypes = ['follows', 'plays', 'wishes', 'develops']
164
165

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
166
167
168
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
169
170
171

    # metagraph
    mg = g.metagraph
Minjie Wang's avatar
Minjie Wang committed
172
    assert set(g.ntypes) == set(mg.nodes)
173
174
175
176
177
178
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
179
180
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
181

182
183
184
    def _test(g):
        # number of nodes
        assert [g.number_of_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
185

186
187
        # number of edges
        assert [g.number_of_edges(etype) for etype in etypes] == [2, 4, 2, 2]
188

189
190
191
192
193
194
195
196
        # has_node & has_nodes
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
                assert g.has_node(i, ntype)
            assert not g.has_node(n, ntype)
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
197

198
199
        assert not g.is_multigraph
        assert g.is_readonly
Minjie Wang's avatar
Minjie Wang committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst, etype)
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst, etype)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0, etype) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0, etype) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst, etype=etype) == i
234
                assert F.asnumpy(g.edge_id(src, dst, etype=etype, return_array=True)).tolist() == [i]
Minjie Wang's avatar
Minjie Wang committed
235
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
236
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
237
238
239
240
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

Minjie Wang's avatar
Minjie Wang committed
241
            # find_edges
242
243
244
245
            for edge_ids in [list(range(n_edges)), np.arange(n_edges), F.astype(F.arange(0, n_edges), g.idtype)]:
                u, v = g.find_edges(edge_ids, etype)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
Minjie Wang's avatar
Minjie Wang committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges('all', order, etype)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
278
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
279
    _test(g)
280
    g = create_test_heterograph1(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
281
    _test(g)
282
    g = create_test_heterograph3(index_dtype)
283
    _test(g)
Minjie Wang's avatar
Minjie Wang committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
299
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
300
    _test(g)
301
    g = create_test_heterograph1(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
302
    _test(g)
303
    g = create_test_heterograph3(index_dtype)
304
    _test(g)
Minjie Wang's avatar
Minjie Wang committed
305
306
307
308

    # test repr
    print(g)

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def test_hypersparse():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

    assert g.has_edge_between(0, 1, 'follows')
    assert not g.has_edge_between(0, 0, 'follows')
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

    assert g.has_edge_between(0, N2, 'plays')
    assert not g.has_edge_between(0, 0, 'plays')
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

    assert g.edge_id(0, 1, etype='follows') == 0
    assert g.edge_id(0, N2, etype='plays') == 0
    assert F.asnumpy(g.edge_ids(0, 1, etype='follows')).tolist() == [0]
    assert F.asnumpy(g.edge_ids(0, N2, etype='plays')).tolist() == [0]

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

    assert g.in_degree(0, 'follows') == 0
    assert g.in_degree(1, 'follows') == 1
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
    assert g.in_degree(0, 'plays') == 0
    assert g.in_degree(N2, 'plays') == 1
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
    assert g.out_degree(0, 'follows') == 1
    assert g.out_degree(1, 'follows') == 0
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
    assert g.out_degree(0, 'plays') == 1
    assert g.out_degree(N2, 'plays') == 0
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
def test_edge_ids():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})
    with pytest.raises(AssertionError):
        eids = g.edge_ids(0, 0, etype='follows')

    with pytest.raises(AssertionError):
        eid = g.edge_id(0, 0, etype='follows')

    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})

    with pytest.raises(AssertionError):
        eids = g2.edge_ids(0, 1, etype='follows')

    with pytest.raises(AssertionError):
        eid = g2.edge_id(0, 1, etype='follows')

400
401
402
@parametrize_dtype
def test_adj(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
    adj = F.sparse_to_numpy(g.adj(etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
    adj = F.sparse_to_numpy(g.adj(etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

    adj = g.adj(scipy_fmt='csr', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='coo', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='csr', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = g.adj(scipy_fmt='coo', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].adj())
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

456
457
458
@parametrize_dtype
def test_inc(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
    #follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
495
496
497

@parametrize_dtype
def test_view(index_dtype):
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    # test single node type
    g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1
    f2 = g.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    fail = False
    try:
        g.ndata['h'] = {'user' : f1}
    except Exception:
        fail = True
    assert fail

    # test single edge type
    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    fail = False
    try:
        g.edata['h'] = {'follows' : f3}
    except Exception:
        fail = True
    assert fail

Minjie Wang's avatar
Minjie Wang committed
523
    # test data view
524
    g = create_test_heterograph(index_dtype)
525
526

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
527
528
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
529
    assert F.array_equal(f1, f2)
Minjie Wang's avatar
Minjie Wang committed
530
    assert F.array_equal(F.tensor(g.nodes('user')), F.arange(0, 3))
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    g.nodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.ndata['h'] = f1
    except Exception:
        fail = True
    assert fail
    g.ndata['h'] = {'user' : f1,
                    'game' : f2}
    f3 = g.nodes['user'].data['h']
    f4 = g.nodes['game'].data['h']
    assert F.array_equal(f1, f3)
    assert F.array_equal(f2, f4)
    data = g.ndata['h']
    assert F.array_equal(f1, data['user'])
    assert F.array_equal(f2, data['game'])
    # test repr
    print(g.ndata)
    g.ndata.pop('h')
    # test repr
    print(g.ndata)
556
557

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
558
559
560
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
561
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
562
563
    assert F.array_equal(f3, f5)
    assert F.array_equal(F.tensor(g.edges(etype='follows', form='eid')), F.arange(0, 2))
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    g.edges['follows'].data.pop('h')

    f3 = F.randn((2, 4))
    fail = False
    try:
        g.edata['h'] = f3
    except Exception:
        fail = True
    assert fail
    g.edata['h'] = {('user', 'follows', 'user') : f3}
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(f3, f5)
    data = g.edata['h']
    assert F.array_equal(f3, data[('user', 'follows', 'user')])
    # test repr
    print(g.edata)
    g.edata.pop('h')
    # test repr
    print(g.edata)

    # test srcdata
    f1 = F.randn((3, 6))
    g.srcnodes['user'].data['h'] = f1       # ok
    f2 = g.srcnodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.srcnodes('user')), F.arange(0, 3))
    g.srcnodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.srcdata['h'] = f1
    except Exception:
        fail = True
    assert fail
    g.srcdata['h'] = {'user' : f1,
                      'developer' : f2}
    f3 = g.srcnodes['user'].data['h']
    f4 = g.srcnodes['developer'].data['h']
    assert F.array_equal(f1, f3)
    assert F.array_equal(f2, f4)
    data = g.srcdata['h']
    assert F.array_equal(f1, data['user'])
    assert F.array_equal(f2, data['developer'])
    # test repr
    print(g.srcdata)
    g.srcdata.pop('h')

    # test dstdata
    f1 = F.randn((3, 6))
    g.dstnodes['user'].data['h'] = f1       # ok
    f2 = g.dstnodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.dstnodes('user')), F.arange(0, 3))
    g.dstnodes['user'].data.pop('h')

    # multi type ndata
    f1 = F.randn((3, 6))
    f2 = F.randn((2, 6))
    fail = False
    try:
        g.dstdata['h'] = f1
    except Exception:
        fail = True
    assert fail
    g.dstdata['h'] = {'user' : f1,
                      'game' : f2}
    f3 = g.dstnodes['user'].data['h']
    f4 = g.dstnodes['game'].data['h']
    assert F.array_equal(f1, f3)
    assert F.array_equal(f2, f4)
    data = g.dstdata['h']
    assert F.array_equal(f1, data['user'])
    assert F.array_equal(f2, data['game'])
    # test repr
    print(g.dstdata)
    g.dstdata.pop('h')
Minjie Wang's avatar
Minjie Wang committed
645

646
647
@parametrize_dtype
def test_view1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
648
    # test relation view
649
    HG = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst)
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst) == i
694
                assert F.asnumpy(g.edge_id(src, dst, return_array=True)).tolist() == [i]
Minjie Wang's avatar
Minjie Wang committed
695
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
696
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
Minjie Wang's avatar
Minjie Wang committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
721
                assert in_degrees[i] == dst_count[i]
Minjie Wang's avatar
Minjie Wang committed
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.nodes()), F.arange(0, 3))

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(F.tensor(g.edges(form='eid')), F.arange(0, 2))

774
775
776
777
    # multiple types
    ndata = HG.ndata['h']
    assert isinstance(ndata, dict)
    assert F.array_equal(ndata['user'], f2)
778

779
780
781
    edata = HG.edata['h']
    assert isinstance(edata, dict)
    assert F.array_equal(edata[('user', 'follows', 'user')], f4)
Minjie Wang's avatar
Minjie Wang committed
782

783
784
@parametrize_dtype
def test_flatten(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
800
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
801
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
802
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
803
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
804
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
805
806
807
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
808
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
    assert set(zip(etypes, eids)) == set([(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1)])

    check_mapping(g, fg)

    fg = g['user', :, 'user']
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
855
856
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user', 'follows', index_dtype=index_dtype)
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows', index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.randn((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y])

    assert F.array_equal(g.ndata['h'], g_x.ndata['h'])
    assert F.array_equal(g.ndata['hh'], g_y.ndata['hh'])
    assert F.array_equal(g.edges['follows'].data['w'], g_x.edata['w'])
    assert F.array_equal(g.edges['knows'].data['ww'], g_y.edata['ww'])

    fg = g['user', :, 'user']
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

878
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
879
880
@parametrize_dtype
def test_to_device(index_dtype):
881
882
883
884
    g = create_test_heterograph(index_dtype)
    g.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cpu())
    g.nodes['game'].data['i'] = F.copy_to(F.ones((2, 5)), F.cpu())
    g.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cpu())
885
    if F.is_cuda_available():
886
887
        g1 = g.to(F.cuda())
        assert g1 is not None
888

889
890
891
892
893
894
895
896
897
    # set feature after g.to
    g = create_test_heterograph(index_dtype)
    if F.is_cuda_available():
        g1 = g.to(F.cuda())
        assert g1 is not None
        g1.nodes['user'].data['h'] = F.copy_to(F.ones((3, 5)), F.cuda())
        g1.nodes['game'].data['i'] = F.copy_to(F.ones((2, 5)), F.cuda())
        g1.edges['plays'].data['e'] = F.copy_to(F.ones((4, 4)), F.cuda())

898
899
@parametrize_dtype
def test_convert_bound(index_dtype):
900
901
    def _test_bipartite_bound(data, card):
        try:
902
            dgl.bipartite(data, num_nodes=card, index_dtype=index_dtype)
903
904
905
906
907
908
        except dgl.DGLError:
            return
        assert False, 'bipartite bound test with wrong uid failed'

    def _test_graph_bound(data, card):
        try:
909
            dgl.graph(data, num_nodes=card, index_dtype=index_dtype)
910
911
912
913
914
915
916
917
918
919
        except dgl.DGLError:
            return
        assert False, 'graph bound test with wrong uid failed'

    _test_bipartite_bound(([1,2],[1,2]),(2,3))
    _test_bipartite_bound(([0,1],[1,4]),(2,3))
    _test_graph_bound(([1,3],[1,2]), 3)
    _test_graph_bound(([0,1],[1,3]),3)


920
921
922
@parametrize_dtype
def test_convert(index_dtype):
    hg = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

    g = dgl.to_homo(hg)
937
    assert g._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
        hg2 = dgl.to_hetero(
964
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
965
966
967
968
969
970
971
972
973
974
975
976
977
978
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
979
    g = dgl.graph([(0, 2), (1, 2), (2, 3), (0, 3)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
980
981
982
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
    hg = dgl.to_hetero(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
983
    assert hg._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
984
985
986
987
988
989
990
991
992
993
994
995
996
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
997
    g = dgl.graph([(0, 1), (0, 2)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
998
999
1000
1001
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
        hg = dgl.to_hetero(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
1002
        assert hg._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
1003
1004
1005
1006
1007
1008
1009
1010
1011
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

1012
    # hetero_to_homo test case 2
1013
    hg = dgl.bipartite([(0, 0), (1, 1)], num_nodes=(2, 3))
1014
1015
1016
    g = dgl.to_homo(hg)
    assert g.number_of_nodes() == 5

1017
1018
1019
@parametrize_dtype
def test_transform(index_dtype):
    g = create_test_heterograph(index_dtype)
Mufei Li's avatar
Mufei Li committed
1020
1021
1022
1023
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
1024
    assert new_g._idtype_str == index_dtype
Mufei Li's avatar
Mufei Li committed
1025
1026
1027
1028
1029
    assert new_g.ntypes == ['user', 'game']
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
1030
    assert new_g._idtype_str == index_dtype
Mufei Li's avatar
Mufei Li committed
1031
1032
1033
1034
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
@unittest.skipIf(dgl.backend.backend_name == "mxnet", reason="MXNet doesn't support bool tensor")
@parametrize_dtype
def test_subgraph_mask(index_dtype):
    g = create_test_heterograph(index_dtype)
    g_graph = g['follows']
    g_bipartite = g['plays']

    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], F.int64))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], F.int64))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    # backend boo input tensor
    sg1 = g.subgraph({'user': F.tensor([False, True, True], dtype=F.data_type_dict['bool']),
                      'game': F.tensor([True, False, False, False], dtype=F.data_type_dict['bool'])})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': F.tensor([False, True], dtype=F.data_type_dict['bool']),
                           'plays': F.tensor([False, True, False, False], dtype=F.data_type_dict['bool']),
                           'wishes': F.tensor([False, True], dtype=F.data_type_dict['bool'])})
    _check_subgraph(g, sg2)

1075
1076
1077
@parametrize_dtype
def test_subgraph(index_dtype):
    g = create_test_heterograph(index_dtype)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1078
1079
1080
    g_graph = g['follows']
    g_bipartite = g['plays']

Minjie Wang's avatar
Minjie Wang committed
1081
1082
1083
1084
1085
1086
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
1087
1088
1089
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], F.int64))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], F.int64))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)

1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
    # backend tensor input
    sg1 = g.subgraph({'user': F.tensor([1, 2], dtype=F.data_type_dict[index_dtype]),
                      'game': F.tensor([0], dtype=F.data_type_dict[index_dtype])})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': F.tensor([1], dtype=F.data_type_dict[index_dtype]),
                           'plays': F.tensor([1], dtype=F.data_type_dict[index_dtype]),
                           'wishes': F.tensor([1], dtype=F.data_type_dict[index_dtype])})
    _check_subgraph(g, sg2)

    # numpy input
    sg1 = g.subgraph({'user': np.array([1, 2]),
                      'game': np.array([0])})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': np.array([1]),
                           'plays': np.array([1]),
                           'wishes': np.array([1])})
    _check_subgraph(g, sg2)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1128
    def _check_subgraph_single_ntype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1129
1130
1131
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1132
1133
1134
1135
1136
1137
1138
1139

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([1, 2], F.int64))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1140
1141
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1142
1143
1144

        if not preserve_nodes:
            assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1145
1146
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1147
    def _check_subgraph_single_etype(g, sg, preserve_nodes=False):
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1148
1149
1150
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160

        if not preserve_nodes:
            assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                                 F.tensor([0, 1], F.int64))
            assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                                 F.tensor([0], F.int64))
        else:
            for ntype in sg.ntypes:
                assert g.number_of_nodes(ntype) == sg.number_of_nodes(ntype)

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1161
1162
1163
1164
1165
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([0, 1], F.int64))

    sg1_graph = g_graph.subgraph([1, 2])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1166
1167
1168
1169
    sg1_graph = g_graph.edge_subgraph([1])
    _check_subgraph_single_ntype(g_graph, sg1_graph)
    sg1_graph = g_graph.edge_subgraph([1], preserve_nodes=True)
    _check_subgraph_single_ntype(g_graph, sg1_graph, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1170
1171
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1])
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1172
1173
    sg2_bipartite = g_bipartite.edge_subgraph([0, 1], preserve_nodes=True)
    _check_subgraph_single_etype(g_bipartite, sg2_bipartite, True)
Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1174

1175
    def _check_typed_subgraph1(g, sg):
Minjie Wang's avatar
Minjie Wang committed
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
1187
1188
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
1189
1190
1191
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
1203
    sg3 = g.node_type_subgraph(['user', 'game'])
1204
1205
1206
1207
1208
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
1209

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
    # Test for restricted format
    for fmt in ['csr', 'csc', 'coo']:
        g = dgl.graph([(0, 1), (1, 2)], restrict_format=fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
        src, dst = sg.all_edges(order='eid')
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))
        assert np.array_equal(dst, np.array([0]))

1222
1223
@parametrize_dtype
def test_apply(index_dtype):
1224
1225
1226
1227
1228
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

1229
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
1241

Minjie Wang's avatar
Minjie Wang committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.apply_nodes(node_udf)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.apply_edges(edge_udf)
    except dgl.DGLError:
        fail = True
    assert fail

1261
1262
@parametrize_dtype
def test_level1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
1263
1264
1265
1266
1267
1268
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1269
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}
    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send([2, 3], mfunc, etype='plays')
    g.recv([0, 1], rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    g.nodes['game'].data.pop('y')

    # only one type
    play_g = g['plays']
    play_g.send([2, 3], mfunc)
    play_g.recv([0, 1], rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    # TODO(minjie): following codes will fail because messages are
    #   not shared with the base graph. However, since send and recv
    #   are rarely used, no fix at the moment.
    # g['plays'].send([2, 3], mfunc)
    # g['plays'].recv([0, 1], mfunc)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send([2, 3], mfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.recv([0, 1], rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi recv
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : rfunc, ('user', 'wishes', 'game'): rfunc2}, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi recv with apply function
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : (rfunc, afunc), ('user', 'wishes', 'game'): rfunc2}, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.send(g.edges(etype='plays'), mfunc, etype='plays')
        g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
        g.multi_recv([0, 1], {'plays' : (rfunc, afunc), 'wishes': rfunc2}, cred, afunc)
        y = g.nodes['game'].data['y']
        g1 = g['plays']
        g2 = g['wishes']
        g1.send(g1.edges(), mfunc)
        g1.recv(g1.nodes('game'), rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g2.send(g2.edges(), mfunc)
        g2.recv(g2.nodes('game'), rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_recv([0, 1], {'plays' : rfunc, 'follows': rfunc2}, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail

VoVAllen's avatar
VoVAllen committed
1353

1354
1355
@parametrize_dtype
def test_level2(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
1356
1357
1358
1359
1360
1361
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1362
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
1385

Minjie Wang's avatar
Minjie Wang committed
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send_and_recv([2, 3], mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
             'wishes': (g.edges(etype='wishes'), mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].send_and_recv(g.edges(etype='plays'), mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].send_and_recv(g.edges(etype='wishes'), mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
             'follows': (g.edges(etype='follows'), mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
    fail = False
    try:
        g.pull(1, mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [3., 3.]]))

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].pull(1, mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].pull(1, mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        g.nodes['game'].data['y'] = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        g.apply_nodes(afunc, 1, ntype='game')
        yy = g.nodes['game'].data['y']
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.update_all(mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1560
1561
1562
1563
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()
1582

1583
1584
@parametrize_dtype
def test_updates(index_dtype):
1585
1586
1587
1588
1589
1590
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1591
    g = create_test_heterograph(index_dtype)
1592
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1593
    g.nodes['user'].data['h'] = x
1594
1595
1596
1597
1598
1599
1600

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1601
        y = g.nodes['game'].data['y']
1602
1603
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1604
        del g.nodes['game'].data['y']
1605
1606

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1607
        y = g.nodes['game'].data['y']
1608
1609
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1610
        del g.nodes['game'].data['y']
1611

Minjie Wang's avatar
Minjie Wang committed
1612
1613
1614
1615
        plays_g = g['user', 'plays', 'game']
        plays_g.send(([0, 1, 2], [0, 1, 1]), msg)
        plays_g.recv([0, 1], red, apply)
        y = g.nodes['game'].data['y']
1616
1617
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1618
        del g.nodes['game'].data['y']
1619
1620
1621

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1622
        y = g.nodes['game'].data['y']
1623
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1624
        del g.nodes['game'].data['y']
1625
1626
1627

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1628
        y = g.nodes['game'].data['y']
1629
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1630
1631
        del g.nodes['game'].data['y']

1632
1633
1634
1635

@parametrize_dtype
def test_backward(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1650

1651
1652
1653

@parametrize_dtype
def test_empty_heterograph(index_dtype):
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty edge list
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): []}))
    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))
    # empty sparse matrix
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ssp.coo_matrix((0, 0))}))
    # empty networkx graph
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): nx.DiGraph()}))

1668
1669
    g = dgl.heterograph({('user', 'follows', 'user'): []}, index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
1670
1671
1672
1673
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1674
1675
1676
    g = dgl.heterograph({('user', 'plays', 'game'): [], ('developer', 'develops', 'game'): [
                        (0, 0), (1, 1)]}, index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
1677
1678
1679
1680
1681
1682
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

1683

1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
def test_types_in_function():
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

    g = dgl.graph([(0, 1), (1, 2)], 'user', 'follow')
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.send([0, 1], mfunc1)
    g.recv([1, 2], rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

    g = dgl.bipartite([(0, 1), (1, 2)], 'user', 'plays', 'game')
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.send([0, 1], mfunc2)
    g.recv([1, 2], rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

1741
1742
@parametrize_dtype
def test_stack_reduce(index_dtype):
1743
1744
1745
1746
1747
1748
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1749
    g = create_test_heterograph(index_dtype)
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

1768
1769
@parametrize_dtype
def test_isolated_ntype(index_dtype):
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
    g = dgl.heterograph({
        ('A', 'AB', 'B'): [(0, 1), (1, 2), (2, 3)]},
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4})
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
        ('A', 'AC', 'C'): [(0, 1), (1, 2), (2, 3)]},
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4})
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    G = dgl.DGLGraph()
    G.add_nodes(11)
    G.add_edges([0, 1, 2], [4, 5, 6])
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
    g = dgl.to_hetero(G, ['A', 'B', 'C'], ['AB'])
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1794
1795
1796
1797
1798

@parametrize_dtype
def test_ismultigraph(index_dtype):
    g1 = dgl.bipartite([(0, 1), (0, 2), (1, 5), (2, 5)], 'A',
                       'AB', 'B', num_nodes=(6, 6), index_dtype=index_dtype)
1799
    assert g1.is_multigraph == False
1800
1801
    g2 = dgl.bipartite([(0, 1), (0, 1), (0, 2), (1, 5)], 'A',
                       'AC', 'C', num_nodes=(6, 6), index_dtype=index_dtype)
1802
    assert g2.is_multigraph == True
1803
1804
    g3 = dgl.graph([(0, 1), (1, 2)], 'A', 'AA',
                   num_nodes=6, index_dtype=index_dtype)
1805
    assert g3.is_multigraph == False
1806
1807
    g4 = dgl.graph([(0, 1), (0, 1), (1, 2)], 'A', 'AA',
                   num_nodes=6, index_dtype=index_dtype)
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
    assert g4.is_multigraph == True
    g = dgl.hetero_from_relations([g1, g3])
    assert g.is_multigraph == False
    g = dgl.hetero_from_relations([g1, g2])
    assert g.is_multigraph == True
    g = dgl.hetero_from_relations([g1, g4])
    assert g.is_multigraph == True
    g = dgl.hetero_from_relations([g2, g4])
    assert g.is_multigraph == True

1818
1819
1820
@parametrize_dtype
def test_bipartite(index_dtype):
    g1 = dgl.bipartite([(0, 1), (0, 2), (1, 5)], 'A', 'AB', 'B', index_dtype=index_dtype)
1821
1822
1823
1824
1825
1826
1827
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1828
1829
1830
1831
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1843
    g2 = dgl.bipartite([(1, 0), (0, 0)], 'A', 'AC', 'C', index_dtype=index_dtype)
1844
1845
1846
1847
1848
1849
1850
    g3 = dgl.hetero_from_relations([g1, g2])
    assert g3.is_unibipartite
    assert g3.srctypes == ['A']
    assert set(g3.dsttypes) == {'B', 'C'}
    assert g3.number_of_nodes('A') == 2
    assert g3.number_of_nodes('B') == 6
    assert g3.number_of_nodes('C') == 1
1851
1852
1853
1854
    assert g3.number_of_src_nodes('A') == 2
    assert g3.number_of_src_nodes() == 2
    assert g3.number_of_dst_nodes('B') == 6
    assert g3.number_of_dst_nodes('C') == 1
1855
1856
1857
1858
1859
    g3.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g3.srcnodes['A'].data['h'], g3.srcdata['h'])
    assert F.array_equal(g3.nodes['A'].data['h'], g3.srcdata['h'])
    assert F.array_equal(g3.nodes['SRC/A'].data['h'], g3.srcdata['h'])

1860
    g4 = dgl.graph([(0, 0), (1, 1)], 'A', 'AA', index_dtype=index_dtype)
1861
1862
1863
    g5 = dgl.hetero_from_relations([g1, g2, g4])
    assert not g5.is_unibipartite

1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
@parametrize_dtype
def test_dtype_cast(index_dtype):
    g = dgl.graph([(0, 0), (1, 1), (0, 1), (2, 0)], index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
    if index_dtype == "int32":
        g_cast = g.long()
        assert g_cast._idtype_str == 'int64'
    else:
        g_cast = g.int()
        assert g_cast._idtype_str == 'int32'
    assert "feat" in g_cast.ndata
    assert "h" in g_cast.edata
    assert F.array_equal(g.ndata["feat"], g_cast.ndata["feat"])
    assert F.array_equal(g.edata["h"], g_cast.edata["h"])

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
def test_format():
    # single relation
    g = dgl.graph([(0, 0), (1, 1), (0, 1), (2, 0)], restrict_format='coo')
    assert g.restrict_format() == 'coo'
    assert g.format_in_use() == ['coo']
    try:
        spmat = g.adjacency_matrix(scipy_fmt="csr")
    except:
        print('test passed, graph with restrict_format coo should not create csr matrix.')
    else:
        assert False, 'cannot create csr when restrict_format is coo'
    g1 = g.to_format('any')
    assert g1.restrict_format() == 'any'
1894
1895
1896
1897
    g1.request_format('coo')
    g1.request_format('csr')
    g1.request_format('csc')
    assert len(g1.format_in_use()) == 3
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
    assert g.restrict_format() == 'coo'
    assert g.format_in_use() == ['coo']

    # multiple relation
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0), (1, 1), (2, 1)],
        ('developer', 'develops', 'game'): [(0, 0), (1, 1)],
        }, restrict_format='csr')
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
    for rel_type in ['follows', 'plays', 'develops']:
        assert g.restrict_format(rel_type) == 'csr'
        assert g.format_in_use(rel_type) == ['csr']
        try:
1913
            g[rel_type].request_format('coo')
1914
1915
1916
        except:
            print('test passed, graph with restrict_format csr should not create coo matrix')
        else:
1917
            assert False, 'cannot create coo when restrict_format is csr'
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928

    g1 = g.to_format('csc')
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
    for rel_type in ['follows', 'plays', 'develops']:
        assert g1.restrict_format(rel_type) == 'csc'
        assert g1.format_in_use(rel_type) == ['csc']
        assert g.restrict_format(rel_type) == 'csr'
        assert g.format_in_use(rel_type) == ['csr']

1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
def test_edges_order():
    # (0, 2), (1, 2), (0, 1), (0, 1), (2, 1)
    g = dgl.graph((
        np.array([0, 1, 0, 0, 2]),
        np.array([2, 2, 1, 1, 1])
    ))

    src, dst = g.all_edges(order='srcdst')
    assert F.array_equal(F.copy_to(src, F.cpu()),
                         F.copy_to(F.tensor([0, 0, 0, 1, 2]), F.cpu()))
    assert F.array_equal(F.copy_to(dst, F.cpu()),
                         F.copy_to(F.tensor([1, 1, 2, 2, 1]), F.cpu()))

1942
1943
1944
1945
1946
1947
@parametrize_dtype
def test_reverse(index_dtype):
    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
    }, index_dtype=index_dtype)
    gidx = g._graph
1948
    r_gidx = gidx.reverse()
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959

    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csr'
    gidx = gidx.to_format('csr')
    gidx = gidx.to_format('any')
1960
    r_gidx = gidx.reverse()
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
    assert gidx.format_in_use(0)[0] == 'csr'
    assert r_gidx.format_in_use(0)[0] == 'csc'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csc'
    gidx = gidx.to_format('csc')
    gidx = gidx.to_format('any')
1973
    r_gidx = gidx.reverse()
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
    assert gidx.format_in_use(0)[0] == 'csc'
    assert r_gidx.format_in_use(0)[0] == 'csr'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    g = dgl.heterograph({
        ('user', 'follows', 'user'): ([0, 1, 2, 4, 3 ,1, 3], [1, 2, 3, 2, 0, 0, 1]),
        ('user', 'plays', 'game'): ([0, 0, 2, 3, 3, 4, 1], [1, 0, 1, 0, 1, 0, 0]),
        ('developer', 'develops', 'game'): ([0, 1, 1, 2], [0, 0, 1, 1]),
        }, index_dtype=index_dtype)
    gidx = g._graph
1989
1990
1991
1992
1993
1994
1995
1996
    r_gidx = gidx.reverse()

    # metagraph
    mg = gidx.metagraph
    r_mg = r_gidx.metagraph
    for etype in range(3):
        assert mg.find_edge(etype) == r_mg.find_edge(etype)[::-1]

1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
    # three node types and three edge types
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csr'
    gidx = gidx.to_format('csr')
    gidx = gidx.to_format('any')
2020
    r_gidx = gidx.reverse()
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
    # three node types and three edge types
    assert gidx.format_in_use(0)[0] == 'csr'
    assert r_gidx.format_in_use(0)[0] == 'csc'
    assert gidx.format_in_use(1)[0] == 'csr'
    assert r_gidx.format_in_use(1)[0] == 'csc'
    assert gidx.format_in_use(2)[0] == 'csr'
    assert r_gidx.format_in_use(2)[0] == 'csc'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

    # force to start with 'csc'
    gidx = gidx.to_format('csc')
    gidx = gidx.to_format('any')
2050
    r_gidx = gidx.reverse()
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
    # three node types and three edge types
    assert gidx.format_in_use(0)[0] == 'csc'
    assert r_gidx.format_in_use(0)[0] == 'csr'
    assert gidx.format_in_use(1)[0] == 'csc'
    assert r_gidx.format_in_use(1)[0] == 'csr'
    assert gidx.format_in_use(2)[0] == 'csc'
    assert r_gidx.format_in_use(2)[0] == 'csr'
    assert gidx.number_of_nodes(0) == r_gidx.number_of_nodes(0)
    assert gidx.number_of_nodes(1) == r_gidx.number_of_nodes(1)
    assert gidx.number_of_nodes(2) == r_gidx.number_of_nodes(2)
    assert gidx.number_of_edges(0) == r_gidx.number_of_edges(0)
    assert gidx.number_of_edges(1) == r_gidx.number_of_edges(1)
    assert gidx.number_of_edges(2) == r_gidx.number_of_edges(2)
    g_s, g_d, _ = gidx.edges(0)
    rg_s, rg_d, _ = r_gidx.edges(0)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(1)
    rg_s, rg_d, _ = r_gidx.edges(1)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())
    g_s, g_d, _ = gidx.edges(2)
    rg_s, rg_d, _ = r_gidx.edges(2)
    assert F.array_equal(g_s.tousertensor(), rg_d.tousertensor())
    assert F.array_equal(g_d.tousertensor(), rg_s.tousertensor())

2077
if __name__ == '__main__':
2078
2079
2080
2081
2082
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
2083
    # test_view("int32")
2084
2085
2086
2087
    # test_view1("int32")
    # test_flatten()
    # test_convert_bound()
    # test_convert()
2088
    # test_to_device("int32")
2089
    # test_transform("int32")
2090
2091
    # test_subgraph("int32")
    # test_subgraph_mask("int32")
2092
2093
2094
2095
2096
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
2097
    # test_empty_heterograph('int32')
2098
2099
2100
2101
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
2102
    # test_dtype_cast()
2103
    # test_reverse("int32")
2104
    test_reverse("int32")
2105
    test_format()
2106
    pass