"src/fastertransformer/vscode:/vscode.git/clone" did not exist on "e357c71fae0ac571d86e394743a07d71c163222b"
test_heterograph.py 61.9 KB
Newer Older
1
2
3
4
5
6
7
8
import dgl
import dgl.function as fn
from collections import Counter
import numpy as np
import scipy.sparse as ssp
import itertools
import backend as F
import networkx as nx
9
import unittest, pytest
10
from dgl import DGLError
11
from utils import parametrize_dtype
12

13
def create_test_heterograph(index_dtype):
14
    # test heterograph from the docstring, plus a user -- wishes -- game relation
Minjie Wang's avatar
Minjie Wang committed
15
16
17
18
19
20
    # 3 users, 2 games, 2 developers
    # metagraph:
    #    ('user', 'follows', 'user'),
    #    ('user', 'plays', 'game'),
    #    ('user', 'wishes', 'game'),
    #    ('developer', 'develops', 'game')])
21
22

    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
Minjie Wang's avatar
Minjie Wang committed
23
24
25
26
27
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
28

29
30
31
32
33
34
35
36
    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows', index_dtype=index_dtype)
    plays_g = dgl.bipartite(plays_spmat, 'user', 'plays', 'game', index_dtype=index_dtype)
    wishes_g = dgl.bipartite(wishes_nx, 'user', 'wishes', 'game', index_dtype=index_dtype)
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game', index_dtype=index_dtype)
    assert follows_g._idtype_str == index_dtype
    assert plays_g._idtype_str == index_dtype
    assert wishes_g._idtype_str == index_dtype
    assert develops_g._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
37
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
38
    assert g._idtype_str == index_dtype
39
40
    return g

41
def create_test_heterograph1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
42
43
44
45
46
47
48
49
50
51
52
53
    edges = []
    edges.extend([(0,1), (1,2)])  # follows
    edges.extend([(0,3), (1,3), (2,4), (1,4)])  # plays
    edges.extend([(0,4), (2,3)])  # wishes
    edges.extend([(5,3), (6,4)])  # develops
    ntypes = F.tensor([0, 0, 0, 1, 1, 2, 2])
    etypes = F.tensor([0, 0, 1, 1, 1, 1, 2, 2, 3, 3])
    g0 = dgl.graph(edges)
    g0.ndata[dgl.NTYPE] = ntypes
    g0.edata[dgl.ETYPE] = etypes
    return dgl.to_hetero(g0, ['user', 'game', 'developer'], ['follows', 'plays', 'wishes', 'develops'])

54
def create_test_heterograph2(index_dtype):
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)
    develops_g = dgl.bipartite([(0, 0), (1, 1)], 'developer', 'develops', 'game')

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): plays_spmat,
        ('user', 'wishes', 'game'): wishes_nx,
        ('developer', 'develops', 'game'): develops_g,
        })
    return g

71
def create_test_heterograph3(index_dtype):
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    plays_spmat = ssp.coo_matrix(([1, 1, 1, 1], ([0, 1, 2, 1], [0, 0, 1, 1])))
    wishes_nx = nx.DiGraph()
    wishes_nx.add_nodes_from(['u0', 'u1', 'u2'], bipartite=0)
    wishes_nx.add_nodes_from(['g0', 'g1'], bipartite=1)
    wishes_nx.add_edge('u0', 'g1', id=0)
    wishes_nx.add_edge('u2', 'g0', id=1)

    follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows', _restrict_format='coo')
    plays_g = dgl.bipartite(
        [(0, 0), (1, 0), (2, 1), (1, 1)], 'user', 'plays', 'game', _restrict_format='coo')
    wishes_g = dgl.bipartite([(0, 1), (2, 0)], 'user', 'wishes', 'game', _restrict_format='coo')
    develops_g = dgl.bipartite(
        [(0, 0), (1, 1)], 'developer', 'develops', 'game', _restrict_format='coo')
    g = dgl.hetero_from_relations([follows_g, plays_g, wishes_g, develops_g])
    return g

Minjie Wang's avatar
Minjie Wang committed
88
89
90
def get_redfn(name):
    return getattr(F, name)

91
92
93
94
95
@parametrize_dtype
def test_create(index_dtype):
    g0 = create_test_heterograph(index_dtype)
    g1 = create_test_heterograph1(index_dtype)
    g2 = create_test_heterograph2(index_dtype)
96
97
    assert set(g0.ntypes) == set(g1.ntypes) == set(g2.ntypes)
    assert set(g0.canonical_etypes) == set(g1.canonical_etypes) == set(g2.canonical_etypes)
Minjie Wang's avatar
Minjie Wang committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    # create from nx complete bipartite graph
    nxg = nx.complete_bipartite_graph(3, 4)
    g = dgl.bipartite(nxg, 'user', 'plays', 'game')
    assert g.ntypes == ['user', 'game']
    assert g.etypes == ['plays']
    assert g.number_of_edges() == 12

    # create from scipy
    spmat = ssp.coo_matrix(([1,1,1], ([0, 0, 1], [2, 3, 2])), shape=(4, 4))
    g = dgl.graph(spmat)
    assert g.number_of_nodes() == 4
    assert g.number_of_edges() == 3

112
113
114
115
116
117
118
119
120
121
    # test inferring number of nodes for heterograph
    g = dgl.heterograph({
        ('l0', 'e0', 'l1'): [(0, 1), (0, 2)],
        ('l0', 'e1', 'l2'): [(2, 2)],
        ('l2', 'e2', 'l2'): [(1, 1), (3, 3)],
        })
    assert g.number_of_nodes('l0') == 3
    assert g.number_of_nodes('l1') == 3
    assert g.number_of_nodes('l2') == 4

122
123
124
125
126
127
    # test if validate flag works
    # homo graph
    fail = False
    try:
        g = dgl.graph(
            ([0, 0, 0, 1, 1, 2], [0, 1, 2, 0, 1, 2]),
128
            num_nodes=2,
129
130
131
132
133
134
135
136
137
138
139
140
            validate=True
        )
    except DGLError:
        fail = True
    finally:
        assert fail, "should catch a DGLError because node ID is out of bound."
    # bipartite graph
    def _test_validate_bipartite(card):
        fail = False
        try:
            g = dgl.bipartite(
                ([0, 0, 1, 1, 2], [1, 1, 2, 2, 3]),
141
                num_nodes=card,
142
143
144
145
146
147
148
149
150
151
                validate=True
            )
        except DGLError:
            fail = True
        finally:
            assert fail, "should catch a DGLError because node ID is out of bound."

    _test_validate_bipartite((3, 3))
    _test_validate_bipartite((2, 4))

152
153
154
@parametrize_dtype
def test_query(index_dtype):
    g = create_test_heterograph(index_dtype)
155
156

    ntypes = ['user', 'game', 'developer']
Minjie Wang's avatar
Minjie Wang committed
157
    canonical_etypes = [
158
159
160
161
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
Minjie Wang's avatar
Minjie Wang committed
162
    etypes = ['follows', 'plays', 'wishes', 'develops']
163
164

    # node & edge types
Minjie Wang's avatar
Minjie Wang committed
165
166
167
    assert set(ntypes) == set(g.ntypes)
    assert set(etypes) == set(g.etypes)
    assert set(canonical_etypes) == set(g.canonical_etypes)
168
169
170

    # metagraph
    mg = g.metagraph
Minjie Wang's avatar
Minjie Wang committed
171
    assert set(g.ntypes) == set(mg.nodes)
172
173
174
175
176
177
    etype_triplets = [(u, v, e) for u, v, e in mg.edges(keys=True)]
    assert set([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')]) == set(etype_triplets)
Minjie Wang's avatar
Minjie Wang committed
178
179
    for i in range(len(etypes)):
        assert g.to_canonical_etype(etypes[i]) == canonical_etypes[i]
180

181
182
183
    def _test(g):
        # number of nodes
        assert [g.number_of_nodes(ntype) for ntype in ntypes] == [3, 2, 2]
184

185
186
        # number of edges
        assert [g.number_of_edges(etype) for etype in etypes] == [2, 4, 2, 2]
187

188
189
190
191
192
193
194
195
        # has_node & has_nodes
        for ntype in ntypes:
            n = g.number_of_nodes(ntype)
            for i in range(n):
                assert g.has_node(i, ntype)
            assert not g.has_node(n, ntype)
            assert np.array_equal(
                F.asnumpy(g.has_nodes([0, n], ntype)).astype('int32'), [1, 0])
Minjie Wang's avatar
Minjie Wang committed
196

197
198
        assert not g.is_multigraph
        assert g.is_readonly
Minjie Wang's avatar
Minjie Wang committed
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

        for etype in etypes:
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst, etype)
            assert F.asnumpy(g.has_edges_between(srcs, dsts, etype)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst, etype)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts, etype)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0, etype)).tolist()) == set(pred)
            u, v = g.in_edges([0], etype=etype)
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0, etype) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0, etype)).tolist()) == set(succ)
            u, v = g.out_edges([0], etype=etype)
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0, etype) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst, etype=etype) == i
233
                assert F.asnumpy(g.edge_id(src, dst, etype=etype, return_array=True)).tolist() == [i]
Minjie Wang's avatar
Minjie Wang committed
234
            assert F.asnumpy(g.edge_ids(srcs, dsts, etype=etype)).tolist() == list(range(n_edges))
235
            u, v, e = g.edge_ids(srcs, dsts, etype=etype, return_uv=True)
236
237
238
239
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

Minjie Wang's avatar
Minjie Wang committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
            # find_edges
            u, v = g.find_edges(list(range(n_edges)), etype)
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges('all', order, etype)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees(etype=etype))
            out_degrees = F.asnumpy(g.out_degrees(etype=etype))
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            utype, _, vtype = g.to_canonical_etype(etype)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
276
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
277
    _test(g)
278
    g = create_test_heterograph1(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
279
    _test(g)
280
    g = create_test_heterograph3(index_dtype)
281
    _test(g)
Minjie Wang's avatar
Minjie Wang committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
297
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
298
    _test(g)
299
    g = create_test_heterograph1(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
300
    _test(g)
301
    g = create_test_heterograph3(index_dtype)
302
    _test(g)
Minjie Wang's avatar
Minjie Wang committed
303
304
305
306

    # test repr
    print(g)

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
def test_hypersparse():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})
    assert g.number_of_nodes('user') == N1
    assert g.number_of_nodes('game') == N1
    assert g.number_of_edges('follows') == 1
    assert g.number_of_edges('plays') == 1

    assert g.has_edge_between(0, 1, 'follows')
    assert not g.has_edge_between(0, 0, 'follows')
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, 1], 'follows')).tolist()
    assert mask == [0, 1]

    assert g.has_edge_between(0, N2, 'plays')
    assert not g.has_edge_between(0, 0, 'plays')
    mask = F.asnumpy(g.has_edges_between([0, 0], [0, N2], 'plays')).tolist()
    assert mask == [0, 1]

    assert F.asnumpy(g.predecessors(0, 'follows')).tolist() == []
    assert F.asnumpy(g.successors(0, 'follows')).tolist() == [1]
    assert F.asnumpy(g.predecessors(1, 'follows')).tolist() == [0]
    assert F.asnumpy(g.successors(1, 'follows')).tolist() == []

    assert F.asnumpy(g.predecessors(0, 'plays')).tolist() == []
    assert F.asnumpy(g.successors(0, 'plays')).tolist() == [N2]
    assert F.asnumpy(g.predecessors(N2, 'plays')).tolist() == [0]
    assert F.asnumpy(g.successors(N2, 'plays')).tolist() == []

    assert g.edge_id(0, 1, etype='follows') == 0
    assert g.edge_id(0, N2, etype='plays') == 0
    assert F.asnumpy(g.edge_ids(0, 1, etype='follows')).tolist() == [0]
    assert F.asnumpy(g.edge_ids(0, N2, etype='plays')).tolist() == [0]

    u, v = g.find_edges([0], 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    u, v = g.find_edges([0], 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    u, v, e = g.all_edges('all', 'eid', 'follows')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [1]
    assert F.asnumpy(e).tolist() == [0]
    u, v, e = g.all_edges('all', 'eid', 'plays')
    assert F.asnumpy(u).tolist() == [0]
    assert F.asnumpy(v).tolist() == [N2]
    assert F.asnumpy(e).tolist() == [0]

    assert g.in_degree(0, 'follows') == 0
    assert g.in_degree(1, 'follows') == 1
    assert F.asnumpy(g.in_degrees([0, 1], 'follows')).tolist() == [0, 1]
    assert g.in_degree(0, 'plays') == 0
    assert g.in_degree(N2, 'plays') == 1
    assert F.asnumpy(g.in_degrees([0, N2], 'plays')).tolist() == [0, 1]
    assert g.out_degree(0, 'follows') == 1
    assert g.out_degree(1, 'follows') == 0
    assert F.asnumpy(g.out_degrees([0, 1], 'follows')).tolist() == [1, 0]
    assert g.out_degree(0, 'plays') == 1
    assert g.out_degree(N2, 'plays') == 0
    assert F.asnumpy(g.out_degrees([0, N2], 'plays')).tolist() == [1, 0]

373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
def test_edge_ids():
    N1 = 1 << 50        # should crash if allocated a CSR
    N2 = 1 << 48

    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})
    with pytest.raises(AssertionError):
        eids = g.edge_ids(0, 0, etype='follows')

    with pytest.raises(AssertionError):
        eid = g.edge_id(0, 0, etype='follows')

    g2 = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (0, 1)],
        ('user', 'plays', 'game'): [(0, N2)]},
        {'user': N1, 'game': N1})

    with pytest.raises(AssertionError):
        eids = g2.edge_ids(0, 1, etype='follows')

    with pytest.raises(AssertionError):
        eid = g2.edge_id(0, 1, etype='follows')

398
399
400
@parametrize_dtype
def test_adj(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
    adj = F.sparse_to_numpy(g.adj(etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='follows'))
    assert np.allclose(
            adj,
            np.array([[0., 1., 0.],
                      [0., 0., 1.],
                      [0., 0., 0.]]))
    adj = F.sparse_to_numpy(g.adj(etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.adj(transpose=True, etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [1., 1.],
                      [0., 1.]]))

    adj = g.adj(scipy_fmt='csr', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='coo', etype='follows')
    assert np.allclose(
            adj.todense(),
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))
    adj = g.adj(scipy_fmt='csr', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = g.adj(scipy_fmt='coo', etype='plays')
    assert np.allclose(
            adj.todense(),
            np.array([[1., 1., 0.],
                      [0., 1., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].adj())
    assert np.allclose(
            adj,
            np.array([[0., 0., 0.],
                      [1., 0., 0.],
                      [0., 1., 0.]]))

454
455
456
@parametrize_dtype
def test_inc(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
    #follows_g = dgl.graph([(0, 1), (1, 2)], 'user', 'follows')
    adj = F.sparse_to_numpy(g['follows'].inc('in'))
    assert np.allclose(
            adj,
            np.array([[0., 0.],
                      [1., 0.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('out'))
    assert np.allclose(
            adj,
            np.array([[1., 0.],
                      [0., 1.],
                      [0., 0.]]))
    adj = F.sparse_to_numpy(g['follows'].inc('both'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
    adj = F.sparse_to_numpy(g.inc('in', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 1., 0., 0.],
                      [0., 0., 1., 1.]]))
    adj = F.sparse_to_numpy(g.inc('out', etype='plays'))
    assert np.allclose(
            adj,
            np.array([[1., 0., 0., 0.],
                      [0., 1., 0., 1.],
                      [0., 0., 1., 0.]]))
    adj = F.sparse_to_numpy(g.inc('both', etype='follows'))
    assert np.allclose(
            adj,
            np.array([[-1., 0.],
                      [1., -1.],
                      [0., 1.]]))
493
494
495

@parametrize_dtype
def test_view(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
496
    # test data view
497
    g = create_test_heterograph(index_dtype)
498
499

    f1 = F.randn((3, 6))
Minjie Wang's avatar
Minjie Wang committed
500
501
    g.nodes['user'].data['h'] = f1       # ok
    f2 = g.nodes['user'].data['h']
502
    assert F.array_equal(f1, f2)
Minjie Wang's avatar
Minjie Wang committed
503
    assert F.array_equal(F.tensor(g.nodes('user')), F.arange(0, 3))
504
505

    f3 = F.randn((2, 4))
Minjie Wang's avatar
Minjie Wang committed
506
507
508
    g.edges['user', 'follows', 'user'].data['h'] = f3
    f4 = g.edges['user', 'follows', 'user'].data['h']
    f5 = g.edges['follows'].data['h']
509
    assert F.array_equal(f3, f4)
Minjie Wang's avatar
Minjie Wang committed
510
511
512
    assert F.array_equal(f3, f5)
    assert F.array_equal(F.tensor(g.edges(etype='follows', form='eid')), F.arange(0, 2))

513
514
@parametrize_dtype
def test_view1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
515
    # test relation view
516
    HG = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    ntypes = ['user', 'game', 'developer']
    canonical_etypes = [
        ('user', 'follows', 'user'),
        ('user', 'plays', 'game'),
        ('user', 'wishes', 'game'),
        ('developer', 'develops', 'game')]
    etypes = ['follows', 'plays', 'wishes', 'develops']

    def _test_query():
        for etype in etypes:
            utype, _, vtype = HG.to_canonical_etype(etype)
            g = HG[etype]
            srcs, dsts = edges[etype]
            for src, dst in zip(srcs, dsts):
                assert g.has_edge_between(src, dst)
            assert F.asnumpy(g.has_edges_between(srcs, dsts)).all()

            srcs, dsts = negative_edges[etype]
            for src, dst in zip(srcs, dsts):
                assert not g.has_edge_between(src, dst)
            assert not F.asnumpy(g.has_edges_between(srcs, dsts)).any()

            srcs, dsts = edges[etype]
            n_edges = len(srcs)

            # predecessors & in_edges & in_degree
            pred = [s for s, d in zip(srcs, dsts) if d == 0]
            assert set(F.asnumpy(g.predecessors(0)).tolist()) == set(pred)
            u, v = g.in_edges([0])
            assert F.asnumpy(v).tolist() == [0] * len(pred)
            assert set(F.asnumpy(u).tolist()) == set(pred)
            assert g.in_degree(0) == len(pred)

            # successors & out_edges & out_degree
            succ = [d for s, d in zip(srcs, dsts) if s == 0]
            assert set(F.asnumpy(g.successors(0)).tolist()) == set(succ)
            u, v = g.out_edges([0])
            assert F.asnumpy(u).tolist() == [0] * len(succ)
            assert set(F.asnumpy(v).tolist()) == set(succ)
            assert g.out_degree(0) == len(succ)

            # edge_id & edge_ids
            for i, (src, dst) in enumerate(zip(srcs, dsts)):
                assert g.edge_id(src, dst) == i
561
                assert F.asnumpy(g.edge_id(src, dst, return_array=True)).tolist() == [i]
Minjie Wang's avatar
Minjie Wang committed
562
            assert F.asnumpy(g.edge_ids(srcs, dsts)).tolist() == list(range(n_edges))
563
            u, v, e = g.edge_ids(srcs, dsts, return_uv=True)
Minjie Wang's avatar
Minjie Wang committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts
            assert F.asnumpy(e).tolist() == list(range(n_edges))

            # find_edges
            u, v = g.find_edges(list(range(n_edges)))
            assert F.asnumpy(u).tolist() == srcs
            assert F.asnumpy(v).tolist() == dsts

            # all_edges.
            for order in ['eid']:
                u, v, e = g.all_edges(form='all', order=order)
                assert F.asnumpy(u).tolist() == srcs
                assert F.asnumpy(v).tolist() == dsts
                assert F.asnumpy(e).tolist() == list(range(n_edges))

            # in_degrees & out_degrees
            in_degrees = F.asnumpy(g.in_degrees())
            out_degrees = F.asnumpy(g.out_degrees())
            src_count = Counter(srcs)
            dst_count = Counter(dsts)
            for i in range(g.number_of_nodes(utype)):
                assert out_degrees[i] == src_count[i]
            for i in range(g.number_of_nodes(vtype)):
                assert in_degrees[i] == dst_count[i]   

    edges = {
        'follows': ([0, 1], [1, 2]),
        'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
        'wishes': ([0, 2], [1, 0]),
        'develops': ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        'follows': ([0, 1], [0, 1]),
        'plays': ([0, 2], [1, 0]),
        'wishes': ([0, 1], [0, 1]),
        'develops': ([0, 1], [1, 0]),
    }
    _test_query()
    etypes = canonical_etypes
    edges = {
        ('user', 'follows', 'user'): ([0, 1], [1, 2]),
        ('user', 'plays', 'game'): ([0, 1, 2, 1], [0, 0, 1, 1]),
        ('user', 'wishes', 'game'): ([0, 2], [1, 0]),
        ('developer', 'develops', 'game'): ([0, 1], [0, 1]),
    }
    # edges that does not exist in the graph
    negative_edges = {
        ('user', 'follows', 'user'): ([0, 1], [0, 1]),
        ('user', 'plays', 'game'): ([0, 2], [1, 0]),
        ('user', 'wishes', 'game'): ([0, 1], [0, 1]),
        ('developer', 'develops', 'game'): ([0, 1], [1, 0]),
        }
    _test_query()

    # test features
    HG.nodes['user'].data['h'] = F.ones((HG.number_of_nodes('user'), 5))
    HG.nodes['game'].data['m'] = F.ones((HG.number_of_nodes('game'), 3)) * 2

    # test only one node type
    g = HG['follows']
    assert g.number_of_nodes() == 3

    # test ndata and edata
    f1 = F.randn((3, 6))
    g.ndata['h'] = f1       # ok
    f2 = HG.nodes['user'].data['h']
    assert F.array_equal(f1, f2)
    assert F.array_equal(F.tensor(g.nodes()), F.arange(0, 3))

    f3 = F.randn((2, 4))
    g.edata['h'] = f3
    f4 = HG.edges['follows'].data['h']
    assert F.array_equal(f3, f4)
    assert F.array_equal(F.tensor(g.edges(form='eid')), F.arange(0, 2))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        HG.ndata['h']
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        HG.edata['h']
    except dgl.DGLError:
        fail = True
    assert fail

657
658
@parametrize_dtype
def test_flatten(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
    def check_mapping(g, fg):
        if len(fg.ntypes) == 1:
            SRC = DST = fg.ntypes[0]
        else:
            SRC = fg.ntypes[0]
            DST = fg.ntypes[1]

        etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
        eids = F.asnumpy(fg.edata[dgl.EID]).tolist()

        for i, (etype, eid) in enumerate(zip(etypes, eids)):
            src_g, dst_g = g.find_edges([eid], g.canonical_etypes[etype])
            src_fg, dst_fg = fg.find_edges([i])
            # TODO(gq): I feel this code is quite redundant; can we just add new members (like
            # "induced_srcid") to returned heterograph object and not store them as features?
674
            assert F.asnumpy(src_g) == F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NID], src_fg)[0])
VoVAllen's avatar
VoVAllen committed
675
            tid = F.asnumpy(F.gather_row(fg.nodes[SRC].data[dgl.NTYPE], src_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
676
            assert g.canonical_etypes[etype][0] == g.ntypes[tid]
677
            assert F.asnumpy(dst_g) == F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NID], dst_fg)[0])
VoVAllen's avatar
VoVAllen committed
678
            tid = F.asnumpy(F.gather_row(fg.nodes[DST].data[dgl.NTYPE], dst_fg)).item()
Minjie Wang's avatar
Minjie Wang committed
679
680
681
            assert g.canonical_etypes[etype][2] == g.ntypes[tid]

    # check for wildcard slices
682
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.nodes['game'].data['i'] = F.ones((2, 5))
    g.edges['plays'].data['e'] = F.ones((4, 4))
    g.edges['wishes'].data['e'] = F.ones((2, 4))
    g.edges['wishes'].data['f'] = F.ones((2, 4))

    fg = g['user', :, 'game']   # user--plays->game and user--wishes->game
    assert len(fg.ntypes) == 2
    assert fg.ntypes == ['user', 'game']
    assert fg.etypes == ['plays+wishes']

    assert F.array_equal(fg.nodes['user'].data['h'], F.ones((3, 5)))
    assert F.array_equal(fg.nodes['game'].data['i'], F.ones((2, 5)))
    assert F.array_equal(fg.edata['e'], F.ones((6, 4)))
    assert 'f' not in fg.edata

    etypes = F.asnumpy(fg.edata[dgl.ETYPE]).tolist()
    eids = F.asnumpy(fg.edata[dgl.EID]).tolist()
    assert set(zip(etypes, eids)) == set([(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), (2, 1)])

    check_mapping(g, fg)

    fg = g['user', :, 'user']
    # NOTE(gq): The node/edge types from the parent graph is returned if there is only one
    # node/edge type.  This differs from the behavior above.
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows']
    u1, v1 = g.edges(etype='follows', order='eid')
    u2, v2 = fg.edges(etype='follows', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g['developer', :, 'game']
    assert fg.ntypes == ['developer', 'game']
    assert fg.etypes == ['develops']
    u1, v1 = g.edges(etype='develops', order='eid')
    u2, v2 = fg.edges(etype='develops', order='eid')
    assert F.array_equal(u1, u2)
    assert F.array_equal(v1, v2)

    fg = g[:, :, :]
    assert fg.ntypes == ['developer+user', 'game+user']
    assert fg.etypes == ['develops+follows+plays+wishes']
    check_mapping(g, fg)

    # Test another heterograph
729
730
    g_x = dgl.graph(([0, 1, 2], [1, 2, 3]), 'user', 'follows', index_dtype=index_dtype)
    g_y = dgl.graph(([0, 2], [2, 3]), 'user', 'knows', index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
    g_x.nodes['user'].data['h'] = F.randn((4, 3))
    g_x.edges['follows'].data['w'] = F.randn((3, 2))
    g_y.nodes['user'].data['hh'] = F.randn((4, 5))
    g_y.edges['knows'].data['ww'] = F.randn((2, 10))
    g = dgl.hetero_from_relations([g_x, g_y])

    assert F.array_equal(g.ndata['h'], g_x.ndata['h'])
    assert F.array_equal(g.ndata['hh'], g_y.ndata['hh'])
    assert F.array_equal(g.edges['follows'].data['w'], g_x.edata['w'])
    assert F.array_equal(g.edges['knows'].data['ww'], g_y.edata['ww'])

    fg = g['user', :, 'user']
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

    fg = g['user', :, :]
    assert fg.ntypes == ['user']
    assert fg.etypes == ['follows+knows']
    check_mapping(g, fg)

752
@unittest.skipIf(F._default_context_str == 'cpu', reason="Need gpu for this test")
753
754
755
@parametrize_dtype
def test_to_device(index_dtype):
    hg = create_test_heterograph(index_dtype)
756
757
758
759
    if F.is_cuda_available():
        hg = hg.to(F.cuda())
        assert hg is not None

760
761
@parametrize_dtype
def test_convert_bound(index_dtype):
762
763
    def _test_bipartite_bound(data, card):
        try:
764
            dgl.bipartite(data, num_nodes=card, index_dtype=index_dtype)
765
766
767
768
769
770
        except dgl.DGLError:
            return
        assert False, 'bipartite bound test with wrong uid failed'

    def _test_graph_bound(data, card):
        try:
771
            dgl.graph(data, num_nodes=card, index_dtype=index_dtype)
772
773
774
775
776
777
778
779
780
781
        except dgl.DGLError:
            return
        assert False, 'graph bound test with wrong uid failed'

    _test_bipartite_bound(([1,2],[1,2]),(2,3))
    _test_bipartite_bound(([0,1],[1,4]),(2,3))
    _test_graph_bound(([1,3],[1,2]), 3)
    _test_graph_bound(([0,1],[1,3]),3)


782
783
784
@parametrize_dtype
def test_convert(index_dtype):
    hg = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
785
786
787
788
789
790
791
792
793
794
795
796
797
798
    hs = []
    for ntype in hg.ntypes:
        h = F.randn((hg.number_of_nodes(ntype), 5))
        hg.nodes[ntype].data['h'] = h
        hs.append(h)
    hg.nodes['user'].data['x'] = F.randn((3, 3))
    ws = []
    for etype in hg.canonical_etypes:
        w = F.randn((hg.number_of_edges(etype), 5))
        hg.edges[etype].data['w'] = w
        ws.append(w)
    hg.edges['plays'].data['x'] = F.randn((4, 3))

    g = dgl.to_homo(hg)
799
    assert g._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
    assert F.array_equal(F.cat(hs, dim=0), g.ndata['h'])
    assert 'x' not in g.ndata
    assert F.array_equal(F.cat(ws, dim=0), g.edata['w'])
    assert 'x' not in g.edata

    src, dst = g.all_edges(order='eid')
    src = F.asnumpy(src)
    dst = F.asnumpy(dst)
    etype_id, eid = F.asnumpy(g.edata[dgl.ETYPE]), F.asnumpy(g.edata[dgl.EID])
    ntype_id, nid = F.asnumpy(g.ndata[dgl.NTYPE]), F.asnumpy(g.ndata[dgl.NID])
    for i in range(g.number_of_edges()):
        srctype = hg.ntypes[ntype_id[src[i]]]
        dsttype = hg.ntypes[ntype_id[dst[i]]]
        etype = hg.etypes[etype_id[i]]
        src_i, dst_i = hg.find_edges([eid[i]], (srctype, etype, dsttype))
        assert np.asscalar(F.asnumpy(src_i)) == nid[src[i]]
        assert np.asscalar(F.asnumpy(dst_i)) == nid[dst[i]]

    mg = nx.MultiDiGraph([
        ('user', 'user', 'follows'),
        ('user', 'game', 'plays'),
        ('user', 'game', 'wishes'),
        ('developer', 'game', 'develops')])

    for _mg in [None, mg]:
        hg2 = dgl.to_hetero(
826
                g, hg.ntypes, hg.etypes,
Minjie Wang's avatar
Minjie Wang committed
827
828
829
830
831
832
833
834
835
836
837
838
839
840
                ntype_field=dgl.NTYPE, etype_field=dgl.ETYPE, metagraph=_mg)
        assert set(hg.ntypes) == set(hg2.ntypes)
        assert set(hg.canonical_etypes) == set(hg2.canonical_etypes)
        for ntype in hg.ntypes:
            assert hg.number_of_nodes(ntype) == hg2.number_of_nodes(ntype)
            assert F.array_equal(hg.nodes[ntype].data['h'], hg2.nodes[ntype].data['h'])
        for canonical_etype in hg.canonical_etypes:
            src, dst = hg.all_edges(etype=canonical_etype, order='eid')
            src2, dst2 = hg2.all_edges(etype=canonical_etype, order='eid')
            assert F.array_equal(src, src2)
            assert F.array_equal(dst, dst2)
            assert F.array_equal(hg.edges[canonical_etype].data['w'], hg2.edges[canonical_etype].data['w'])

    # hetero_from_homo test case 2
841
    g = dgl.graph([(0, 2), (1, 2), (2, 3), (0, 3)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
842
843
844
    g.ndata[dgl.NTYPE] = F.tensor([0, 0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0, 1, 2])
    hg = dgl.to_hetero(g, ['l0', 'l1', 'l2'], ['e0', 'e1', 'e2'])
845
    assert hg._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
846
847
848
849
850
851
852
853
854
855
856
857
858
    assert set(hg.canonical_etypes) == set(
        [('l0', 'e0', 'l1'), ('l1', 'e1', 'l2'), ('l0', 'e2', 'l2')])
    assert hg.number_of_nodes('l0') == 2
    assert hg.number_of_nodes('l1') == 1
    assert hg.number_of_nodes('l2') == 1
    assert hg.number_of_edges('e0') == 2
    assert hg.number_of_edges('e1') == 1
    assert hg.number_of_edges('e2') == 1

    # hetero_from_homo test case 3
    mg = nx.MultiDiGraph([
        ('user', 'movie', 'watches'),
        ('user', 'TV', 'watches')])
859
    g = dgl.graph([(0, 1), (0, 2)], index_dtype=index_dtype)
Minjie Wang's avatar
Minjie Wang committed
860
861
862
863
    g.ndata[dgl.NTYPE] = F.tensor([0, 1, 2])
    g.edata[dgl.ETYPE] = F.tensor([0, 0])
    for _mg in [None, mg]:
        hg = dgl.to_hetero(g, ['user', 'TV', 'movie'], ['watches'], metagraph=_mg)
864
        assert hg._idtype_str == index_dtype
Minjie Wang's avatar
Minjie Wang committed
865
866
867
868
869
870
871
872
873
        assert set(hg.canonical_etypes) == set(
            [('user', 'watches', 'movie'), ('user', 'watches', 'TV')])
        assert hg.number_of_nodes('user') == 1
        assert hg.number_of_nodes('TV') == 1
        assert hg.number_of_nodes('movie') == 1
        assert hg.number_of_edges(('user', 'watches', 'TV')) == 1
        assert hg.number_of_edges(('user', 'watches', 'movie')) == 1
        assert len(hg.etypes) == 2

874
    # hetero_to_homo test case 2
875
    hg = dgl.bipartite([(0, 0), (1, 1)], num_nodes=(2, 3))
876
877
878
    g = dgl.to_homo(hg)
    assert g.number_of_nodes() == 5

879
880
881
@parametrize_dtype
def test_transform(index_dtype):
    g = create_test_heterograph(index_dtype)
Mufei Li's avatar
Mufei Li committed
882
883
884
885
    x = F.randn((3, 5))
    g.nodes['user'].data['h'] = x

    new_g = dgl.metapath_reachable_graph(g, ['follows', 'plays'])
886
    assert new_g._idtype_str == index_dtype
Mufei Li's avatar
Mufei Li committed
887
888
889
890
891
    assert new_g.ntypes == ['user', 'game']
    assert new_g.number_of_edges() == 3
    assert F.asnumpy(new_g.has_edges_between([0, 0, 1], [0, 1, 1])).all()

    new_g = dgl.metapath_reachable_graph(g, ['follows'])
892
    assert new_g._idtype_str == index_dtype
Mufei Li's avatar
Mufei Li committed
893
894
895
896
    assert new_g.ntypes == ['user']
    assert new_g.number_of_edges() == 2
    assert F.asnumpy(new_g.has_edges_between([0, 1], [1, 2])).all()

897
898
899
@parametrize_dtype
def test_subgraph(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
900
901
902
903
904
905
    x = F.randn((3, 5))
    y = F.randn((2, 4))
    g.nodes['user'].data['h'] = x
    g.edges['follows'].data['h'] = y

    def _check_subgraph(g, sg):
906
907
908
        assert sg.ntypes == g.ntypes
        assert sg.etypes == g.etypes
        assert sg.canonical_etypes == g.canonical_etypes
Minjie Wang's avatar
Minjie Wang committed
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
        assert F.array_equal(F.tensor(sg.nodes['user'].data[dgl.NID]),
                             F.tensor([1, 2], F.int64))
        assert F.array_equal(F.tensor(sg.nodes['game'].data[dgl.NID]),
                             F.tensor([0], F.int64))
        assert F.array_equal(F.tensor(sg.edges['follows'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['plays'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert F.array_equal(F.tensor(sg.edges['wishes'].data[dgl.EID]),
                             F.tensor([1], F.int64))
        assert sg.number_of_nodes('developer') == 0
        assert sg.number_of_edges('develops') == 0
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'][1:3])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'][1:2])

    sg1 = g.subgraph({'user': [1, 2], 'game': [0]})
    _check_subgraph(g, sg1)
    sg2 = g.edge_subgraph({'follows': [1], 'plays': [1], 'wishes': [1]})
    _check_subgraph(g, sg2)

929
    def _check_typed_subgraph1(g, sg):
Minjie Wang's avatar
Minjie Wang committed
930
931
932
933
934
935
936
937
938
939
940
        assert set(sg.ntypes) == {'user', 'game'}
        assert set(sg.etypes) == {'follows', 'plays', 'wishes'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])
VoVAllen's avatar
VoVAllen committed
941
942
        g.nodes['user'].data['h'] = F.scatter_row(g.nodes['user'].data['h'], F.tensor([2]), F.randn((1, 5)))
        g.edges['follows'].data['h'] = F.scatter_row(g.edges['follows'].data['h'], F.tensor([1]), F.randn((1, 4)))
Minjie Wang's avatar
Minjie Wang committed
943
944
945
        assert F.array_equal(sg.nodes['user'].data['h'], g.nodes['user'].data['h'])
        assert F.array_equal(sg.edges['follows'].data['h'], g.edges['follows'].data['h'])

946
947
948
949
950
951
952
953
954
955
956
    def _check_typed_subgraph2(g, sg):
        assert set(sg.ntypes) == {'developer', 'game'}
        assert set(sg.etypes) == {'develops'}
        for ntype in sg.ntypes:
            assert sg.number_of_nodes(ntype) == g.number_of_nodes(ntype)
        for etype in sg.etypes:
            src_sg, dst_sg = sg.all_edges(etype=etype, order='eid')
            src_g, dst_g = g.all_edges(etype=etype, order='eid')
            assert F.array_equal(src_sg, src_g)
            assert F.array_equal(dst_sg, dst_g)

Minjie Wang's avatar
Minjie Wang committed
957
    sg3 = g.node_type_subgraph(['user', 'game'])
958
959
960
961
962
    _check_typed_subgraph1(g, sg3)
    sg4 = g.edge_type_subgraph(['develops'])
    _check_typed_subgraph2(g, sg4)
    sg5 = g.edge_type_subgraph(['follows', 'plays', 'wishes'])
    _check_typed_subgraph1(g, sg5)
963

Quan (Andy) Gan's avatar
Quan (Andy) Gan committed
964
965
966
967
968
969
970
971
972
973
974
975
    # Test for restricted format
    for fmt in ['csr', 'csc', 'coo']:
        g = dgl.graph([(0, 1), (1, 2)], restrict_format=fmt)
        sg = g.subgraph({g.ntypes[0]: [1, 0]})
        nids = F.asnumpy(sg.ndata[dgl.NID])
        assert np.array_equal(nids, np.array([1, 0]))
        src, dst = sg.all_edges(order='eid')
        src = F.asnumpy(src)
        dst = F.asnumpy(dst)
        assert np.array_equal(src, np.array([1]))
        assert np.array_equal(dst, np.array([0]))

976
977
@parametrize_dtype
def test_apply(index_dtype):
978
979
980
981
982
    def node_udf(nodes):
        return {'h': nodes.data['h'] * 2}
    def edge_udf(edges):
        return {'h': edges.data['h'] * 2 + edges.src['h']}

983
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
984
985
986
987
988
989
990
991
992
993
994
    g.nodes['user'].data['h'] = F.ones((3, 5))
    g.apply_nodes(node_udf, ntype='user')
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 2)

    g['plays'].edata['h'] = F.ones((4, 5))
    g.apply_edges(edge_udf, etype=('user', 'plays', 'game'))
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 4)

    # test apply on graph with only one type
    g['follows'].apply_nodes(node_udf)
    assert F.array_equal(g.nodes['user'].data['h'], F.ones((3, 5)) * 4)
995

Minjie Wang's avatar
Minjie Wang committed
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
    g['plays'].apply_edges(edge_udf)
    assert F.array_equal(g['plays'].edata['h'], F.ones((4, 5)) * 12)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.apply_nodes(node_udf)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.apply_edges(edge_udf)
    except dgl.DGLError:
        fail = True
    assert fail

1015
1016
@parametrize_dtype
def test_level1(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
1017
1018
1019
1020
1021
1022
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1023
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}
    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send([2, 3], mfunc, etype='plays')
    g.recv([0, 1], rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    g.nodes['game'].data.pop('y')

    # only one type
    play_g = g['plays']
    play_g.send([2, 3], mfunc)
    play_g.recv([0, 1], rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    # TODO(minjie): following codes will fail because messages are
    #   not shared with the base graph. However, since send and recv
    #   are rarely used, no fix at the moment.
    # g['plays'].send([2, 3], mfunc)
    # g['plays'].recv([0, 1], mfunc)

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send([2, 3], mfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    fail = False
    try:
        g.recv([0, 1], rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi recv
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : rfunc, ('user', 'wishes', 'game'): rfunc2}, 'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi recv with apply function
    g.send(g.edges(etype='plays'), mfunc, etype='plays')
    g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
    g.multi_recv([0, 1], {'plays' : (rfunc, afunc), ('user', 'wishes', 'game'): rfunc2}, 'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.send(g.edges(etype='plays'), mfunc, etype='plays')
        g.send(g.edges(etype='wishes'), mfunc, etype='wishes')
        g.multi_recv([0, 1], {'plays' : (rfunc, afunc), 'wishes': rfunc2}, cred, afunc)
        y = g.nodes['game'].data['y']
        g1 = g['plays']
        g2 = g['wishes']
        g1.send(g1.edges(), mfunc)
        g1.recv(g1.nodes('game'), rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g2.send(g2.edges(), mfunc)
        g2.recv(g2.nodes('game'), rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_recv([0, 1], {'plays' : rfunc, 'follows': rfunc2}, 'sum')
    except dgl.DGLError:
        fail = True
    assert fail

VoVAllen's avatar
VoVAllen committed
1107

1108
1109
@parametrize_dtype
def test_level2(index_dtype):
Minjie Wang's avatar
Minjie Wang committed
1110
1111
1112
1113
1114
1115
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1116
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    def afunc(nodes):
        return {'y' : nodes.data['y'] + 1}

    #############################################################
    #  send_and_recv
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.send_and_recv([2, 3], mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].send_and_recv([2, 3], mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))
    
    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.send_and_recv([2, 3], mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_send_and_recv(
        {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (g.edges(etype='wishes'), mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc, afunc),
             'wishes': (g.edges(etype='wishes'), mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].send_and_recv(g.edges(etype='plays'), mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].send_and_recv(g.edges(etype='wishes'), mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        yy = yy + 1  # final afunc
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_send_and_recv(
            {'plays' : (g.edges(etype='plays'), mfunc, rfunc),
             'follows': (g.edges(etype='follows'), mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  pull
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.pull(1, mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # only one type
    g['plays'].pull(1, mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[0., 0.], [2., 2.]]))

    # test fail case
    fail = False
    try:
        g.pull(1, mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [3., 3.]]))

    # test multi
    g.multi_pull(
        1,
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[0., 0.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean']:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].pull(1, mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].pull(1, mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        g.nodes['game'].data['y'] = get_redfn(cred)(F.stack([y1, y2], 0), 0)
        g.apply_nodes(afunc, 1, ntype='game')
        yy = g.nodes['game'].data['y']
        assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.multi_pull(
            1,
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()

    #############################################################
    #  update_all
    #############################################################

    g.nodes['user'].data['h'] = F.ones((3, 2))
    g.update_all(mfunc, rfunc, etype='plays')
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # only one type
    g['plays'].update_all(mfunc, rfunc)
    y = g.nodes['game'].data['y']
    assert F.array_equal(y, F.tensor([[2., 2.], [2., 2.]]))

    # test fail case
    # fail due to multiple types
    fail = False
    try:
        g.update_all(mfunc, rfunc)
    except dgl.DGLError:
        fail = True
    assert fail

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum')
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[3., 3.], [3., 3.]]))

    # test multi
    g.multi_update_all(
        {'plays' : (mfunc, rfunc, afunc),
         ('user', 'wishes', 'game'): (mfunc, rfunc2)},
        'sum', afunc)
    assert F.array_equal(g.nodes['game'].data['y'], F.tensor([[5., 5.], [5., 5.]]))

    # test cross reducer
    g.nodes['user'].data['h'] = F.randn((3, 2))
    for cred in ['sum', 'max', 'min', 'mean', 'stack']:
        g.multi_update_all(
            {'plays' : (mfunc, rfunc, afunc),
             'wishes': (mfunc, rfunc2)},
            cred, afunc)
        y = g.nodes['game'].data['y']
        g['plays'].update_all(mfunc, rfunc, afunc)
        y1 = g.nodes['game'].data['y']
        g['wishes'].update_all(mfunc, rfunc2)
        y2 = g.nodes['game'].data['y']
        if cred == 'stack':
1314
1315
1316
1317
            # stack has an internal order by edge type id
            yy = F.stack([y1, y2], 1)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)
Minjie Wang's avatar
Minjie Wang committed
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
        else:
            yy = get_redfn(cred)(F.stack([y1, y2], 0), 0)
            yy = yy + 1  # final afunc
            assert F.array_equal(y, yy)

    # test fail case
    # fail because cannot infer ntype
    fail = False
    try:
        g.update_all(
            {'plays' : (mfunc, rfunc),
             'follows': (mfunc, rfunc2)},
            'sum')
    except dgl.DGLError:
        fail = True
    assert fail

    g.nodes['game'].data.clear()
1336

1337
1338
@parametrize_dtype
def test_updates(index_dtype):
1339
1340
1341
1342
1343
1344
    def msg_func(edges):
        return {'m': edges.src['h']}
    def reduce_func(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def apply_func(nodes):
        return {'y': nodes.data['y'] * 2}
1345
    g = create_test_heterograph(index_dtype)
1346
    x = F.randn((3, 5))
Minjie Wang's avatar
Minjie Wang committed
1347
    g.nodes['user'].data['h'] = x
1348
1349
1350
1351
1352
1353
1354

    for msg, red, apply in itertools.product(
            [fn.copy_u('h', 'm'), msg_func], [fn.sum('m', 'y'), reduce_func],
            [None, apply_func]):
        multiplier = 1 if apply is None else 2

        g['user', 'plays', 'game'].update_all(msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1355
        y = g.nodes['game'].data['y']
1356
1357
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1358
        del g.nodes['game'].data['y']
1359
1360

        g['user', 'plays', 'game'].send_and_recv(([0, 1, 2], [0, 1, 1]), msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1361
        y = g.nodes['game'].data['y']
1362
1363
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1364
        del g.nodes['game'].data['y']
1365

Minjie Wang's avatar
Minjie Wang committed
1366
1367
1368
1369
        plays_g = g['user', 'plays', 'game']
        plays_g.send(([0, 1, 2], [0, 1, 1]), msg)
        plays_g.recv([0, 1], red, apply)
        y = g.nodes['game'].data['y']
1370
1371
        assert F.array_equal(y[0], x[0] * multiplier)
        assert F.array_equal(y[1], (x[1] + x[2]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1372
        del g.nodes['game'].data['y']
1373
1374
1375

        # pulls from destination (game) node 0
        g['user', 'plays', 'game'].pull(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1376
        y = g.nodes['game'].data['y']
1377
        assert F.array_equal(y[0], (x[0] + x[1]) * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1378
        del g.nodes['game'].data['y']
1379
1380
1381

        # pushes from source (user) node 0
        g['user', 'plays', 'game'].push(0, msg, red, apply)
Minjie Wang's avatar
Minjie Wang committed
1382
        y = g.nodes['game'].data['y']
1383
        assert F.array_equal(y[0], x[0] * multiplier)
Minjie Wang's avatar
Minjie Wang committed
1384
1385
        del g.nodes['game'].data['y']

1386
1387
1388
1389

@parametrize_dtype
def test_backward(index_dtype):
    g = create_test_heterograph(index_dtype)
Minjie Wang's avatar
Minjie Wang committed
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    x = F.randn((3, 5))
    F.attach_grad(x)
    g.nodes['user'].data['h'] = x
    with F.record_grad():
        g.multi_update_all(
            {'plays' : (fn.copy_u('h', 'm'), fn.sum('m', 'y')),
             'wishes': (fn.copy_u('h', 'm'), fn.sum('m', 'y'))},
            'sum')
        y = g.nodes['game'].data['y']
        F.backward(y, F.ones(y.shape))
    print(F.grad(x))
    assert F.array_equal(F.grad(x), F.tensor([[2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.],
                                              [2., 2., 2., 2., 2.]]))
1404

1405
1406
1407

@parametrize_dtype
def test_empty_heterograph(index_dtype):
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    def assert_empty(g):
        assert g.number_of_nodes('user') == 0
        assert g.number_of_edges('plays') == 0
        assert g.number_of_nodes('game') == 0

    # empty edge list
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): []}))
    # empty src-dst pair
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ([], [])}))
    # empty sparse matrix
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): ssp.coo_matrix((0, 0))}))
    # empty networkx graph
    assert_empty(dgl.heterograph({('user', 'plays', 'game'): nx.DiGraph()}))

1422
1423
    g = dgl.heterograph({('user', 'follows', 'user'): []}, index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
1424
1425
1426
1427
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('follows') == 0

    # empty relation graph with others
1428
1429
1430
    g = dgl.heterograph({('user', 'plays', 'game'): [], ('developer', 'develops', 'game'): [
                        (0, 0), (1, 1)]}, index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
1431
1432
1433
1434
1435
1436
    assert g.number_of_nodes('user') == 0
    assert g.number_of_edges('plays') == 0
    assert g.number_of_nodes('game') == 2
    assert g.number_of_edges('develops') == 2
    assert g.number_of_nodes('developer') == 2

1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
def test_types_in_function():
    def mfunc1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return {}

    def rfunc1(nodes):
        assert nodes.ntype == 'user'
        return {}

    def filter_nodes1(nodes):
        assert nodes.ntype == 'user'
        return F.zeros((3,))

    def filter_edges1(edges):
        assert edges.canonical_etype == ('user', 'follow', 'user')
        return F.zeros((2,))

    def mfunc2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return {}

    def rfunc2(nodes):
        assert nodes.ntype == 'game'
        return {}

    def filter_nodes2(nodes):
        assert nodes.ntype == 'game'
        return F.zeros((3,))

    def filter_edges2(edges):
        assert edges.canonical_etype == ('user', 'plays', 'game')
        return F.zeros((2,))

    g = dgl.graph([(0, 1), (1, 2)], 'user', 'follow')
    g.apply_nodes(rfunc1)
    g.apply_edges(mfunc1)
    g.update_all(mfunc1, rfunc1)
    g.send_and_recv([0, 1], mfunc1, rfunc1)
    g.send([0, 1], mfunc1)
    g.recv([1, 2], rfunc1)
    g.push([0], mfunc1, rfunc1)
    g.pull([1], mfunc1, rfunc1)
    g.filter_nodes(filter_nodes1)
    g.filter_edges(filter_edges1)

    g = dgl.bipartite([(0, 1), (1, 2)], 'user', 'plays', 'game')
    g.apply_nodes(rfunc2, ntype='game')
    g.apply_edges(mfunc2)
    g.update_all(mfunc2, rfunc2)
    g.send_and_recv([0, 1], mfunc2, rfunc2)
    g.send([0, 1], mfunc2)
    g.recv([1, 2], rfunc2)
    g.push([0], mfunc2, rfunc2)
    g.pull([1], mfunc2, rfunc2)
    g.filter_nodes(filter_nodes2, ntype='game')
    g.filter_edges(filter_edges2)

1495
1496
@parametrize_dtype
def test_stack_reduce(index_dtype):
1497
1498
1499
1500
1501
1502
    #edges = {
    #    'follows': ([0, 1], [1, 2]),
    #    'plays': ([0, 1, 2, 1], [0, 0, 1, 1]),
    #    'wishes': ([0, 2], [1, 0]),
    #    'develops': ([0, 1], [0, 1]),
    #}
1503
    g = create_test_heterograph(index_dtype)
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
    g.nodes['user'].data['h'] = F.randn((3, 200))
    def rfunc(nodes):
        return {'y': F.sum(nodes.mailbox['m'], 1)}
    def rfunc2(nodes):
        return {'y': F.max(nodes.mailbox['m'], 1)}
    def mfunc(edges):
        return {'m': edges.src['h']}
    g.multi_update_all(
            {'plays' : (mfunc, rfunc),
             'wishes': (mfunc, rfunc2)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 2, 200)
    # only one type-wise update_all, stack still adds one dimension
    g.multi_update_all(
            {'plays' : (mfunc, rfunc)},
            'stack')
    assert g.nodes['game'].data['y'].shape == (g.number_of_nodes('game'), 1, 200)

1522
1523
@parametrize_dtype
def test_isolated_ntype(index_dtype):
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
    g = dgl.heterograph({
        ('A', 'AB', 'B'): [(0, 1), (1, 2), (2, 3)]},
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4})
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    g = dgl.heterograph({
        ('A', 'AC', 'C'): [(0, 1), (1, 2), (2, 3)]},
        num_nodes_dict={'A': 3, 'B': 4, 'C': 4})
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

    G = dgl.DGLGraph()
    G.add_nodes(11)
    G.add_edges([0, 1, 2], [4, 5, 6])
    G.ndata[dgl.NTYPE] = F.tensor([0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2], dtype=F.int64)
    G.edata[dgl.ETYPE] = F.tensor([0, 0, 0], dtype=F.int64)
    g = dgl.to_hetero(G, ['A', 'B', 'C'], ['AB'])
    assert g.number_of_nodes('A') == 3
    assert g.number_of_nodes('B') == 4
    assert g.number_of_nodes('C') == 4

1548
1549
1550
1551
1552

@parametrize_dtype
def test_ismultigraph(index_dtype):
    g1 = dgl.bipartite([(0, 1), (0, 2), (1, 5), (2, 5)], 'A',
                       'AB', 'B', num_nodes=(6, 6), index_dtype=index_dtype)
1553
    assert g1.is_multigraph == False
1554
1555
    g2 = dgl.bipartite([(0, 1), (0, 1), (0, 2), (1, 5)], 'A',
                       'AC', 'C', num_nodes=(6, 6), index_dtype=index_dtype)
1556
    assert g2.is_multigraph == True
1557
1558
    g3 = dgl.graph([(0, 1), (1, 2)], 'A', 'AA',
                   num_nodes=6, index_dtype=index_dtype)
1559
    assert g3.is_multigraph == False
1560
1561
    g4 = dgl.graph([(0, 1), (0, 1), (1, 2)], 'A', 'AA',
                   num_nodes=6, index_dtype=index_dtype)
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
    assert g4.is_multigraph == True
    g = dgl.hetero_from_relations([g1, g3])
    assert g.is_multigraph == False
    g = dgl.hetero_from_relations([g1, g2])
    assert g.is_multigraph == True
    g = dgl.hetero_from_relations([g1, g4])
    assert g.is_multigraph == True
    g = dgl.hetero_from_relations([g2, g4])
    assert g.is_multigraph == True

1572
1573
1574
@parametrize_dtype
def test_bipartite(index_dtype):
    g1 = dgl.bipartite([(0, 1), (0, 2), (1, 5)], 'A', 'AB', 'B', index_dtype=index_dtype)
1575
1576
1577
1578
1579
1580
1581
    assert g1.is_unibipartite
    assert len(g1.ntypes) == 2
    assert g1.etypes == ['AB']
    assert g1.srctypes == ['A']
    assert g1.dsttypes == ['B']
    assert g1.number_of_nodes('A') == 2
    assert g1.number_of_nodes('B') == 6
1582
1583
1584
1585
    assert g1.number_of_src_nodes('A') == 2
    assert g1.number_of_src_nodes() == 2
    assert g1.number_of_dst_nodes('B') == 6
    assert g1.number_of_dst_nodes() == 6
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
    assert g1.number_of_edges() == 3
    g1.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g1.srcnodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['A'].data['h'], g1.srcdata['h'])
    assert F.array_equal(g1.nodes['SRC/A'].data['h'], g1.srcdata['h'])
    g1.dstdata['h'] = F.randn((6, 3))
    assert F.array_equal(g1.dstnodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['B'].data['h'], g1.dstdata['h'])
    assert F.array_equal(g1.nodes['DST/B'].data['h'], g1.dstdata['h'])

    # more complicated bipartite
1597
    g2 = dgl.bipartite([(1, 0), (0, 0)], 'A', 'AC', 'C', index_dtype=index_dtype)
1598
1599
1600
1601
1602
1603
1604
    g3 = dgl.hetero_from_relations([g1, g2])
    assert g3.is_unibipartite
    assert g3.srctypes == ['A']
    assert set(g3.dsttypes) == {'B', 'C'}
    assert g3.number_of_nodes('A') == 2
    assert g3.number_of_nodes('B') == 6
    assert g3.number_of_nodes('C') == 1
1605
1606
1607
1608
    assert g3.number_of_src_nodes('A') == 2
    assert g3.number_of_src_nodes() == 2
    assert g3.number_of_dst_nodes('B') == 6
    assert g3.number_of_dst_nodes('C') == 1
1609
1610
1611
1612
1613
    g3.srcdata['h'] = F.randn((2, 5))
    assert F.array_equal(g3.srcnodes['A'].data['h'], g3.srcdata['h'])
    assert F.array_equal(g3.nodes['A'].data['h'], g3.srcdata['h'])
    assert F.array_equal(g3.nodes['SRC/A'].data['h'], g3.srcdata['h'])

1614
    g4 = dgl.graph([(0, 0), (1, 1)], 'A', 'AA', index_dtype=index_dtype)
1615
1616
1617
    g5 = dgl.hetero_from_relations([g1, g2, g4])
    assert not g5.is_unibipartite

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
@parametrize_dtype
def test_dtype_cast(index_dtype):
    g = dgl.graph([(0, 0), (1, 1), (0, 1), (2, 0)], index_dtype=index_dtype)
    assert g._idtype_str == index_dtype
    g.ndata["feat"] = F.tensor([3, 4, 5])
    g.edata["h"] = F.tensor([3, 4, 5, 6])
    if index_dtype == "int32":
        g_cast = g.long()
        assert g_cast._idtype_str == 'int64'
    else:
        g_cast = g.int()
        assert g_cast._idtype_str == 'int32'
    assert "feat" in g_cast.ndata
    assert "h" in g_cast.edata
    assert F.array_equal(g.ndata["feat"], g_cast.ndata["feat"])
    assert F.array_equal(g.edata["h"], g_cast.edata["h"])

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
def test_format():
    # single relation
    g = dgl.graph([(0, 0), (1, 1), (0, 1), (2, 0)], restrict_format='coo')
    assert g.restrict_format() == 'coo'
    assert g.format_in_use() == ['coo']
    
    try:
        spmat = g.adjacency_matrix(scipy_fmt="csr")
    except:
        print('test passed, graph with restrict_format coo should not create csr matrix.')
    else:
        assert False, 'cannot create csr when restrict_format is coo'
    
    g1 = g.to_format('any')
    assert g1.restrict_format() == 'any'
    spmat = g1.adjacency_matrix(scipy_fmt='coo')
    spmat = g1.adjacency_matrix(scipy_fmt='csr')
    spmat = g1.adjacency_matrix(transpose=True, scipy_fmt='csr')
    assert len(g1.restrict_format()) == 3
    assert g.restrict_format() == 'coo'
    assert g.format_in_use() == ['coo']

    # multiple relation
    g = dgl.heterograph({
        ('user', 'follows', 'user'): [(0, 1), (1, 2)],
        ('user', 'plays', 'game'): [(0, 0), (1, 0), (1, 1), (2, 1)],
        ('developer', 'develops', 'game'): [(0, 0), (1, 1)],
        }, restrict_format='csr')
    user_feat = F.randn((g['follows'].number_of_src_nodes(), 5))
    g['follows'].srcdata['h'] = user_feat
    for rel_type in ['follows', 'plays', 'develops']:
        assert g.restrict_format(rel_type) == 'csr'
        print(g.format_in_use(rel_type), g.restrict_format(rel_type))
        assert g.format_in_use(rel_type) == ['csr']
    
        try:
            spmat = g[rel_type].adjacency_matrix(scipy_fmt='coo')
        except:
            print('test passed, graph with restrict_format csr should not create coo matrix')
        else:
            assert False, 'cannot create coo when restrict_ormat is csr'

    g1 = g.to_format('csc')
    # test frame
    assert F.array_equal(g1['follows'].srcdata['h'], user_feat)
    # test each relation graph
    for rel_type in ['follows', 'plays', 'develops']:
        assert g1.restrict_format(rel_type) == 'csc'
        assert g1.format_in_use(rel_type) == ['csc']
        assert g.restrict_format(rel_type) == 'csr'
        assert g.format_in_use(rel_type) == ['csr']

1687
if __name__ == '__main__':
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
    # test_create()
    # test_query()
    # test_hypersparse()
    # test_adj("int32")
    # test_inc()
    # test_view()
    # test_view1("int32")
    # test_flatten()
    # test_convert_bound()
    # test_convert()
    # test_to_device()
    # test_transform("int32")
    # test_subgraph()
    # test_apply()
    # test_level1()
    # test_level2()
    # test_updates()
    # test_backward()
    # test_empty_heterograph()
    # test_types_in_function()
    # test_stack_reduce()
    # test_isolated_ntype()
    # test_bipartite()
1711
1712
    # test_dtype_cast()
    test_format()