test_meta_arch_rcnn.py 7.66 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import os
import unittest

import torch
from d2go.export.api import convert_and_export_predictor
from d2go.export.d2_meta_arch import patch_d2_meta_arch
from d2go.runner import GeneralizedRCNNRunner
13
14
15
from d2go.utils.testing.data_loader_helper import (
    create_detection_data_loader_on_toy_dataset,
)
16
from d2go.utils.testing.rcnn_helper import get_quick_test_config_opts, RCNNBaseTestCases
17
from mobile_cv.common.misc.file_utils import make_temp_directory
18
from mobile_cv.common.misc.oss_utils import is_oss
19
20
21
22
23
24

# Add APIs to D2's meta arch, this is usually called in runner's setup, however in
# unittest it needs to be called sperarately. (maybe we should apply this by default)
patch_d2_meta_arch()


25
def _maybe_skip_test(self, predictor_type):
26
    if is_oss() and "@c2_ops" in predictor_type:
27
28
29
30
31
32
        self.skipTest("Caffe2 is not available for OSS")

    if not torch.cuda.is_available() and "_gpu" in predictor_type:
        self.skipTest("GPU is not available for exporting GPU model")


33
class TestFBNetV3MaskRCNNFP32(RCNNBaseTestCases.TemplateTestCase):
34
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
35
        super().setup_custom_test()
36
37
38
39
40
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
41
42
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
43
            ["torchscript@c2_ops", True],
44
            ["torchscript", True],
Yanghan Wang's avatar
Yanghan Wang committed
45
            ["torchscript_int8@c2_ops", False],
Yanghan Wang's avatar
Yanghan Wang committed
46
47
48
49
            ["torchscript_int8", False],
        ]
    )
    def test_export(self, predictor_type, compare_match):
50
        _maybe_skip_test(self, predictor_type)
Yanghan Wang's avatar
Yanghan Wang committed
51
        self._test_export(predictor_type, compare_match=compare_match)
52
53


54
55
56
57
58
59
60
61
62
63
class TestFBNetV3MaskRCNNFPNFP32(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
        super().setup_custom_test()
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3g_fpn.yaml")

    def test_inference(self):
        self._test_inference()

    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
64
65
66
67
68
            # FIXME: exporting c2_ops for FPN model might not pass this test for certain
            # combination of image sizes and resizing targets. data points are:
            # - passes before D35238890: image_size and resizing target are both 32x64 (backbone's divisibility).
            # - doesn't pass after D35238890: image_size are 32x64, resizing to 5x10.
            ["torchscript@c2_ops", False],
69
70
71
72
73
74
            ["torchscript", True],
            ["torchscript_int8@c2_ops", False],
            ["torchscript_int8", False],
        ]
    )
    def test_export(self, predictor_type, compare_match):
75
        _maybe_skip_test(self, predictor_type)
76
77
78
        self._test_export(predictor_type, compare_match=compare_match)


79
80
class TestFBNetV3MaskRCNNQATEager(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
81
        super().setup_custom_test()
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        # enable QAT
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
                "QUANTIZATION.QAT.ENABLED",
                "True",
            ]
        )
        # FIXME: NaiveSyncBN is not supported
        self.cfg.merge_from_list(["MODEL.FBNET_V2.NORM", "bn"])

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
98
99
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
100
            ["torchscript_int8@c2_ops", False],  # TODO: fix mismatch
Yanghan Wang's avatar
Yanghan Wang committed
101
102
103
104
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
105
        _maybe_skip_test(self, predictor_type)
Yanghan Wang's avatar
Yanghan Wang committed
106
        self._test_export(predictor_type, compare_match=compare_match)
107
108


109
class TestFBNetV3KeypointRCNNFP32(RCNNBaseTestCases.TemplateTestCase):
110
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
111
        super().setup_custom_test()
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        self.cfg.merge_from_file("detectron2go://keypoint_rcnn_fbnetv3a_dsmask_C4.yaml")

        # FIXME: have to use qnnpack due to follow error:
        # Per Channel Quantization is currently disabled for transposed conv
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
            ]
        )

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
126
127
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
128
            ["torchscript_int8@c2_ops", False],  # TODO: fix mismatch
Yanghan Wang's avatar
Yanghan Wang committed
129
130
131
132
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
133
        if is_oss() and "@c2_ops" in predictor_type:
Yanghan Wang's avatar
Yanghan Wang committed
134
            self.skipTest("Caffe2 is not available for OSS")
Yanghan Wang's avatar
Yanghan Wang committed
135
        self._test_export(predictor_type, compare_match=compare_match)
136
137
138
139
140
141
142
143
144
145
146
147


class TestTorchVisionExport(unittest.TestCase):
    def test_export_torchvision_format(self):
        runner = GeneralizedRCNNRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        cfg.merge_from_list(get_quick_test_config_opts())

        cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
        pytorch_model = runner.build_model(cfg, eval_only=True)

148
        from typing import Dict, List
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

        class Wrapper(torch.nn.Module):
            def __init__(self, model):
                super().__init__()
                self.model = model

            def forward(self, inputs: List[torch.Tensor]):
                x = inputs[0].unsqueeze(0) * 255
                scale = 320.0 / min(x.shape[-2], x.shape[-1])
                x = torch.nn.functional.interpolate(
                    x,
                    scale_factor=scale,
                    mode="bilinear",
                    align_corners=True,
                    recompute_scale_factor=True,
                )
                out = self.model(x[0])
                res: Dict[str, torch.Tensor] = {}
                res["boxes"] = out[0] / scale
                res["labels"] = out[2]
                res["scores"] = out[1]
                return inputs, [res]

        size_divisibility = max(pytorch_model.backbone.size_divisibility, 10)
        h, w = size_divisibility, size_divisibility * 2
174
175
176
        with create_detection_data_loader_on_toy_dataset(
            cfg, h, w, is_train=False
        ) as data_loader:
177
178
179
180
            with make_temp_directory("test_export_torchvision_format") as tmp_dir:
                predictor_path = convert_and_export_predictor(
                    cfg,
                    copy.deepcopy(pytorch_model),
181
                    "torchscript",
182
183
184
185
186
187
188
189
190
191
192
193
                    tmp_dir,
                    data_loader,
                )

                orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit"))
                wrapped_model = Wrapper(orig_model)
                # optionally do a forward
                wrapped_model([torch.rand(3, 600, 600)])
                scripted_model = torch.jit.script(wrapped_model)
                scripted_model.save(os.path.join(tmp_dir, "new_file.pt"))


194
195
196
197
198
199
200
201
202
203
204
205
206
207
class TestMaskRCNNExportOptions(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
        super().setup_custom_test()
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")

    def _get_test_image_sizes(self, is_train):
        # postprocessing requires no resize from "data loader"
        return self._get_test_image_size_no_resize(is_train)

    def test_tracing_with_postprocess(self):
        self.cfg.merge_from_list(["RCNN_EXPORT.INCLUDE_POSTPROCESS", True])
        self._test_export("torchscript@tracing", compare_match=True)


208
209
if __name__ == "__main__":
    unittest.main()