test_meta_arch_rcnn.py 7.64 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import os
import unittest

import torch
from d2go.export.api import convert_and_export_predictor
from d2go.export.d2_meta_arch import patch_d2_meta_arch
from d2go.runner import GeneralizedRCNNRunner
13
14
15
from d2go.utils.testing.data_loader_helper import (
    create_detection_data_loader_on_toy_dataset,
)
16
17
18
19
20
21
22
23
from d2go.utils.testing.rcnn_helper import RCNNBaseTestCases, get_quick_test_config_opts
from mobile_cv.common.misc.file_utils import make_temp_directory

# Add APIs to D2's meta arch, this is usually called in runner's setup, however in
# unittest it needs to be called sperarately. (maybe we should apply this by default)
patch_d2_meta_arch()


24
25
26
27
28
29
30
31
def _maybe_skip_test(self, predictor_type):
    if os.getenv("OSSRUN") == "1" and "@c2_ops" in predictor_type:
        self.skipTest("Caffe2 is not available for OSS")

    if not torch.cuda.is_available() and "_gpu" in predictor_type:
        self.skipTest("GPU is not available for exporting GPU model")


32
class TestFBNetV3MaskRCNNFP32(RCNNBaseTestCases.TemplateTestCase):
33
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
34
        super().setup_custom_test()
35
36
37
38
39
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
40
41
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
42
            ["torchscript@c2_ops", True],
43
            ["torchscript", True],
Yanghan Wang's avatar
Yanghan Wang committed
44
            ["torchscript_int8@c2_ops", False],
Yanghan Wang's avatar
Yanghan Wang committed
45
46
47
48
            ["torchscript_int8", False],
        ]
    )
    def test_export(self, predictor_type, compare_match):
49
        _maybe_skip_test(self, predictor_type)
Yanghan Wang's avatar
Yanghan Wang committed
50
        self._test_export(predictor_type, compare_match=compare_match)
51
52


53
54
55
56
57
58
59
60
61
62
class TestFBNetV3MaskRCNNFPNFP32(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
        super().setup_custom_test()
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3g_fpn.yaml")

    def test_inference(self):
        self._test_inference()

    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
63
64
65
66
67
            # FIXME: exporting c2_ops for FPN model might not pass this test for certain
            # combination of image sizes and resizing targets. data points are:
            # - passes before D35238890: image_size and resizing target are both 32x64 (backbone's divisibility).
            # - doesn't pass after D35238890: image_size are 32x64, resizing to 5x10.
            ["torchscript@c2_ops", False],
68
69
70
71
72
73
            ["torchscript", True],
            ["torchscript_int8@c2_ops", False],
            ["torchscript_int8", False],
        ]
    )
    def test_export(self, predictor_type, compare_match):
74
        _maybe_skip_test(self, predictor_type)
75
76
77
        self._test_export(predictor_type, compare_match=compare_match)


78
79
class TestFBNetV3MaskRCNNQATEager(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
80
        super().setup_custom_test()
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        # enable QAT
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
                "QUANTIZATION.QAT.ENABLED",
                "True",
            ]
        )
        # FIXME: NaiveSyncBN is not supported
        self.cfg.merge_from_list(["MODEL.FBNET_V2.NORM", "bn"])

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
97
98
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
99
            ["torchscript_int8@c2_ops", False],  # TODO: fix mismatch
Yanghan Wang's avatar
Yanghan Wang committed
100
101
102
103
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
104
        _maybe_skip_test(self, predictor_type)
Yanghan Wang's avatar
Yanghan Wang committed
105
        self._test_export(predictor_type, compare_match=compare_match)
106
107


108
class TestFBNetV3KeypointRCNNFP32(RCNNBaseTestCases.TemplateTestCase):
109
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
110
        super().setup_custom_test()
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        self.cfg.merge_from_file("detectron2go://keypoint_rcnn_fbnetv3a_dsmask_C4.yaml")

        # FIXME: have to use qnnpack due to follow error:
        # Per Channel Quantization is currently disabled for transposed conv
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
            ]
        )

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
125
126
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
127
            ["torchscript_int8@c2_ops", False],  # TODO: fix mismatch
Yanghan Wang's avatar
Yanghan Wang committed
128
129
130
131
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
Yanghan Wang's avatar
Yanghan Wang committed
132
133
        if os.getenv("OSSRUN") == "1" and "@c2_ops" in predictor_type:
            self.skipTest("Caffe2 is not available for OSS")
Yanghan Wang's avatar
Yanghan Wang committed
134
        self._test_export(predictor_type, compare_match=compare_match)
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172


class TestTorchVisionExport(unittest.TestCase):
    def test_export_torchvision_format(self):
        runner = GeneralizedRCNNRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        cfg.merge_from_list(get_quick_test_config_opts())

        cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
        pytorch_model = runner.build_model(cfg, eval_only=True)

        from typing import List, Dict

        class Wrapper(torch.nn.Module):
            def __init__(self, model):
                super().__init__()
                self.model = model

            def forward(self, inputs: List[torch.Tensor]):
                x = inputs[0].unsqueeze(0) * 255
                scale = 320.0 / min(x.shape[-2], x.shape[-1])
                x = torch.nn.functional.interpolate(
                    x,
                    scale_factor=scale,
                    mode="bilinear",
                    align_corners=True,
                    recompute_scale_factor=True,
                )
                out = self.model(x[0])
                res: Dict[str, torch.Tensor] = {}
                res["boxes"] = out[0] / scale
                res["labels"] = out[2]
                res["scores"] = out[1]
                return inputs, [res]

        size_divisibility = max(pytorch_model.backbone.size_divisibility, 10)
        h, w = size_divisibility, size_divisibility * 2
173
174
175
        with create_detection_data_loader_on_toy_dataset(
            cfg, h, w, is_train=False
        ) as data_loader:
176
177
178
179
            with make_temp_directory("test_export_torchvision_format") as tmp_dir:
                predictor_path = convert_and_export_predictor(
                    cfg,
                    copy.deepcopy(pytorch_model),
180
                    "torchscript",
181
182
183
184
185
186
187
188
189
190
191
192
                    tmp_dir,
                    data_loader,
                )

                orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit"))
                wrapped_model = Wrapper(orig_model)
                # optionally do a forward
                wrapped_model([torch.rand(3, 600, 600)])
                scripted_model = torch.jit.script(wrapped_model)
                scripted_model.save(os.path.join(tmp_dir, "new_file.pt"))


193
194
195
196
197
198
199
200
201
202
203
204
205
206
class TestMaskRCNNExportOptions(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
        super().setup_custom_test()
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")

    def _get_test_image_sizes(self, is_train):
        # postprocessing requires no resize from "data loader"
        return self._get_test_image_size_no_resize(is_train)

    def test_tracing_with_postprocess(self):
        self.cfg.merge_from_list(["RCNN_EXPORT.INCLUDE_POSTPROCESS", True])
        self._test_export("torchscript@tracing", compare_match=True)


207
208
if __name__ == "__main__":
    unittest.main()