test_meta_arch_rcnn.py 5.28 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import os
import unittest

import torch
from d2go.export.api import convert_and_export_predictor
from d2go.export.d2_meta_arch import patch_d2_meta_arch
from d2go.runner import GeneralizedRCNNRunner
from d2go.utils.testing.data_loader_helper import create_fake_detection_data_loader
from d2go.utils.testing.rcnn_helper import RCNNBaseTestCases, get_quick_test_config_opts
from mobile_cv.common.misc.file_utils import make_temp_directory

# Add APIs to D2's meta arch, this is usually called in runner's setup, however in
# unittest it needs to be called sperarately. (maybe we should apply this by default)
patch_d2_meta_arch()


class TestFBNetV3MaskRCNNNormal(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
24
        super().setup_custom_test()
25
26
27
28
29
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
30
31
32
33
34
35
36
37
38
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
            ["torchscript@tracing", True],
            ["torchscript_int8", False],
            ["torchscript_int8@tracing", False],
        ]
    )
    def test_export(self, predictor_type, compare_match):
        self._test_export(predictor_type, compare_match=compare_match)
39
40
41
42


class TestFBNetV3MaskRCNNQATEager(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
43
        super().setup_custom_test()
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        # enable QAT
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
                "QUANTIZATION.QAT.ENABLED",
                "True",
            ]
        )
        # FIXME: NaiveSyncBN is not supported
        self.cfg.merge_from_list(["MODEL.FBNET_V2.NORM", "bn"])

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
60
61
62
63
64
65
66
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
        self._test_export(predictor_type, compare_match=compare_match)
67
68
69
70


class TestFBNetV3KeypointRCNNNormal(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
71
        super().setup_custom_test()
72
73
74
75
76
77
78
79
80
81
82
83
84
85
        self.cfg.merge_from_file("detectron2go://keypoint_rcnn_fbnetv3a_dsmask_C4.yaml")

        # FIXME: have to use qnnpack due to follow error:
        # Per Channel Quantization is currently disabled for transposed conv
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
            ]
        )

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
86
87
88
89
90
91
92
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
        self._test_export(predictor_type, compare_match=compare_match)
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150


class TestTorchVisionExport(unittest.TestCase):
    def test_export_torchvision_format(self):
        runner = GeneralizedRCNNRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        cfg.merge_from_list(get_quick_test_config_opts())

        cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
        pytorch_model = runner.build_model(cfg, eval_only=True)

        from typing import List, Dict

        class Wrapper(torch.nn.Module):
            def __init__(self, model):
                super().__init__()
                self.model = model

            def forward(self, inputs: List[torch.Tensor]):
                x = inputs[0].unsqueeze(0) * 255
                scale = 320.0 / min(x.shape[-2], x.shape[-1])
                x = torch.nn.functional.interpolate(
                    x,
                    scale_factor=scale,
                    mode="bilinear",
                    align_corners=True,
                    recompute_scale_factor=True,
                )
                out = self.model(x[0])
                res: Dict[str, torch.Tensor] = {}
                res["boxes"] = out[0] / scale
                res["labels"] = out[2]
                res["scores"] = out[1]
                return inputs, [res]

        size_divisibility = max(pytorch_model.backbone.size_divisibility, 10)
        h, w = size_divisibility, size_divisibility * 2
        with create_fake_detection_data_loader(h, w, is_train=False) as data_loader:
            with make_temp_directory("test_export_torchvision_format") as tmp_dir:
                predictor_path = convert_and_export_predictor(
                    cfg,
                    copy.deepcopy(pytorch_model),
                    "torchscript@tracing",
                    tmp_dir,
                    data_loader,
                )

                orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit"))
                wrapped_model = Wrapper(orig_model)
                # optionally do a forward
                wrapped_model([torch.rand(3, 600, 600)])
                scripted_model = torch.jit.script(wrapped_model)
                scripted_model.save(os.path.join(tmp_dir, "new_file.pt"))


if __name__ == "__main__":
    unittest.main()