test_meta_arch_rcnn.py 5.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved


import copy
import os
import unittest

import torch
from d2go.export.api import convert_and_export_predictor
from d2go.export.d2_meta_arch import patch_d2_meta_arch
from d2go.runner import GeneralizedRCNNRunner
from d2go.utils.testing.data_loader_helper import create_fake_detection_data_loader
from d2go.utils.testing.rcnn_helper import RCNNBaseTestCases, get_quick_test_config_opts
from mobile_cv.common.misc.file_utils import make_temp_directory

# Add APIs to D2's meta arch, this is usually called in runner's setup, however in
# unittest it needs to be called sperarately. (maybe we should apply this by default)
patch_d2_meta_arch()


22
class TestFBNetV3MaskRCNNFP32(RCNNBaseTestCases.TemplateTestCase):
23
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
24
        super().setup_custom_test()
25
26
27
28
29
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
30
31
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
32
            ["torchscript@c2_ops", True],
33
            ["torchscript", True],
Yanghan Wang's avatar
Yanghan Wang committed
34
            ["torchscript_int8@c2_ops", False],
Yanghan Wang's avatar
Yanghan Wang committed
35
36
37
38
            ["torchscript_int8", False],
        ]
    )
    def test_export(self, predictor_type, compare_match):
Yanghan Wang's avatar
Yanghan Wang committed
39
40
        if os.getenv("OSSRUN") == "1" and "@c2_ops" in predictor_type:
            self.skipTest("Caffe2 is not available for OSS")
Yanghan Wang's avatar
Yanghan Wang committed
41
        self._test_export(predictor_type, compare_match=compare_match)
42
43
44
45


class TestFBNetV3MaskRCNNQATEager(RCNNBaseTestCases.TemplateTestCase):
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
46
        super().setup_custom_test()
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
        self.cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        # enable QAT
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
                "QUANTIZATION.QAT.ENABLED",
                "True",
            ]
        )
        # FIXME: NaiveSyncBN is not supported
        self.cfg.merge_from_list(["MODEL.FBNET_V2.NORM", "bn"])

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
63
64
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
65
            ["torchscript_int8@c2_ops", False],  # TODO: fix mismatch
Yanghan Wang's avatar
Yanghan Wang committed
66
67
68
69
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
Yanghan Wang's avatar
Yanghan Wang committed
70
71
        if os.getenv("OSSRUN") == "1" and "@c2_ops" in predictor_type:
            self.skipTest("Caffe2 is not available for OSS")
Yanghan Wang's avatar
Yanghan Wang committed
72
        self._test_export(predictor_type, compare_match=compare_match)
73
74


75
class TestFBNetV3KeypointRCNNFP32(RCNNBaseTestCases.TemplateTestCase):
76
    def setup_custom_test(self):
Yanghan Wang's avatar
Yanghan Wang committed
77
        super().setup_custom_test()
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        self.cfg.merge_from_file("detectron2go://keypoint_rcnn_fbnetv3a_dsmask_C4.yaml")

        # FIXME: have to use qnnpack due to follow error:
        # Per Channel Quantization is currently disabled for transposed conv
        self.cfg.merge_from_list(
            [
                "QUANTIZATION.BACKEND",
                "qnnpack",
            ]
        )

    def test_inference(self):
        self._test_inference()

Yanghan Wang's avatar
Yanghan Wang committed
92
93
    @RCNNBaseTestCases.expand_parameterized_test_export(
        [
Yanghan Wang's avatar
Yanghan Wang committed
94
            ["torchscript_int8@c2_ops", False],  # TODO: fix mismatch
Yanghan Wang's avatar
Yanghan Wang committed
95
96
97
98
            ["torchscript_int8", False],  # TODO: fix mismatch
        ]
    )
    def test_export(self, predictor_type, compare_match):
Yanghan Wang's avatar
Yanghan Wang committed
99
100
        if os.getenv("OSSRUN") == "1" and "@c2_ops" in predictor_type:
            self.skipTest("Caffe2 is not available for OSS")
Yanghan Wang's avatar
Yanghan Wang committed
101
        self._test_export(predictor_type, compare_match=compare_match)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144


class TestTorchVisionExport(unittest.TestCase):
    def test_export_torchvision_format(self):
        runner = GeneralizedRCNNRunner()
        cfg = runner.get_default_cfg()
        cfg.merge_from_file("detectron2go://mask_rcnn_fbnetv3a_dsmask_C4.yaml")
        cfg.merge_from_list(get_quick_test_config_opts())

        cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
        pytorch_model = runner.build_model(cfg, eval_only=True)

        from typing import List, Dict

        class Wrapper(torch.nn.Module):
            def __init__(self, model):
                super().__init__()
                self.model = model

            def forward(self, inputs: List[torch.Tensor]):
                x = inputs[0].unsqueeze(0) * 255
                scale = 320.0 / min(x.shape[-2], x.shape[-1])
                x = torch.nn.functional.interpolate(
                    x,
                    scale_factor=scale,
                    mode="bilinear",
                    align_corners=True,
                    recompute_scale_factor=True,
                )
                out = self.model(x[0])
                res: Dict[str, torch.Tensor] = {}
                res["boxes"] = out[0] / scale
                res["labels"] = out[2]
                res["scores"] = out[1]
                return inputs, [res]

        size_divisibility = max(pytorch_model.backbone.size_divisibility, 10)
        h, w = size_divisibility, size_divisibility * 2
        with create_fake_detection_data_loader(h, w, is_train=False) as data_loader:
            with make_temp_directory("test_export_torchvision_format") as tmp_dir:
                predictor_path = convert_and_export_predictor(
                    cfg,
                    copy.deepcopy(pytorch_model),
145
                    "torchscript",
146
147
148
149
150
151
152
153
154
155
156
157
158
159
                    tmp_dir,
                    data_loader,
                )

                orig_model = torch.jit.load(os.path.join(predictor_path, "model.jit"))
                wrapped_model = Wrapper(orig_model)
                # optionally do a forward
                wrapped_model([torch.rand(3, 600, 600)])
                scripted_model = torch.jit.script(wrapped_model)
                scripted_model.save(os.path.join(tmp_dir, "new_file.pt"))


if __name__ == "__main__":
    unittest.main()