attn.py 11.9 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
import torch
4
import logging
Haotian Tang's avatar
Haotian Tang committed
5
6
import torch.nn as nn
import awq_inference_engine
Casper Hansen's avatar
Casper Hansen committed
7
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
8
from awq.utils.utils import compute_memory_used_pct
Casper Hansen's avatar
Casper Hansen committed
9

Casper's avatar
Casper committed
10
11
12
13
14
try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False
qwopqwop200's avatar
qwopqwop200 committed
15

Casper Hansen's avatar
Casper Hansen committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
):
    xq_ = torch.view_as_complex(
        xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    xk_ = torch.view_as_complex(
        xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

Casper Hansen's avatar
Casper Hansen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def gen_slopes(n_heads, alibi_bias_max=8):
    _n_heads = 2 ** math.ceil(math.log2(n_heads))
    m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / _n_heads)
    slopes = 1.0 / torch.pow(2, m)
    if _n_heads != n_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
    return slopes.view(1, n_heads, 1, 1)


def build_alibi_bias(
    n_heads, seq_len, full=False, alibi_bias_max=8, dtype=torch.float32
):
    alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
    if full:
        alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32).view(
            1, 1, seq_len, 1
        )
        alibi_bias = alibi_bias.abs().mul(-1)
    slopes = gen_slopes(n_heads, alibi_bias_max)
    alibi_bias = alibi_bias * slopes
    slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
    return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)

Haotian Tang's avatar
Haotian Tang committed
70

Casper Hansen's avatar
Casper Hansen committed
71
class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
72
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
73
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
74
75
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
76
77
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
78
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
79
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
80
81
82
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
83
        self.use_alibi = use_alibi
84
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
85
86
87
        self.max_seq_len = max_seq_len
        self.attention_shapes = self._get_attention_shapes(attention_shapes, max_seq_len)
        self._initialize_cache(dev)
Casper Hansen's avatar
Casper Hansen committed
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        if use_alibi:
            alibi_slopes, alibi_bias = build_alibi_bias(self.n_heads, max_seq_len)
            self.alibi_slopes = alibi_slopes.float().to(dev)
            self.alibi_bias = alibi_bias.float().to(dev)
            self.rotary_dim = 0
            self.is_neox = False
        else:
            self.freqs_cis = precompute_freqs_cis(
                hidden_size // n_heads,
                max_seq_len * 2,
            ).to(dev)
            self.rotary_dim = self.head_dim
            self.alibi_slopes = None
            self.is_neox = True
    
    def _initialize_cache(self, dev):
        self.cache_v = (
            torch.zeros(self.attention_shapes["cache_v"]).to(dev).half()
        )
        
        self.cache_k = (
            torch.zeros(self.attention_shapes["cache_k"]).to(dev).half()
        )
    
    def _get_attention_shapes(self, attention_shapes, max_seq_len):
Casper Hansen's avatar
Casper Hansen committed
114
        if attention_shapes is not None:
115
            attention_shapes = attention_shapes
Casper Hansen's avatar
Casper Hansen committed
116
117

        elif self.n_kv_heads == 0:
118
            attention_shapes = {
Casper Hansen's avatar
Casper Hansen committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (-1, self.n_heads, self.head_dim),
                "xq_slice": lambda xqkv: xqkv[:, :, 0],
                "xk_slice": lambda xqkv: xqkv[:, :, 1],
                "xv_slice": lambda xqkv: xqkv[:, :, 2],
                "xq_view": (self.n_heads, self.head_dim),
                "xk_view": (self.n_heads, self.head_dim),
                "xv_view": (self.n_heads, self.head_dim),
                "xk_reshape": (self.n_heads, self.head_dim // 8, 8),
                "single_xq_view": (self.n_heads, self.head_dim),
                "single_xk_view": (self.n_heads, self.head_dim),
                "single_xv_view": (self.n_heads, self.head_dim)
            }

        else:
137
            attention_shapes = {
Casper Hansen's avatar
Casper Hansen committed
138
139
140
141
142
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_kv_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_kv_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (self.n_heads + self.n_kv_heads * 2, self.head_dim),
143
                "xq_slice": lambda xqkv: xqkv[:, :, 0 : self.n_heads],
Casper Hansen's avatar
Casper Hansen committed
144
145
                "xk_slice": lambda xqkv: xqkv[:, :, self.n_heads : (self.n_heads + self.n_kv_heads)],
                "xv_slice": lambda xqkv: xqkv[:, :, -self.n_kv_heads :],
146
                "xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
147
148
149
                "xk_view": (self.n_kv_heads, self.head_dim),
                "xv_view": (self.n_kv_heads, self.head_dim),
                "xk_reshape": (self.n_kv_heads, self.head_dim // 8, 8),
150
                "single_xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
151
152
153
                "single_xk_view": (self.n_kv_heads, self.head_dim),
                "single_xv_view": (self.n_kv_heads, self.head_dim)
            }
154
        
155
        return attention_shapes
156
    
Casper Hansen's avatar
Casper Hansen committed
157
158
    def forward(
        self,
159
        hidden_states:torch.Tensor, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False
Casper Hansen's avatar
Casper Hansen committed
160
161
    ):
        bsz, seqlen, _ = hidden_states.shape
162
163
164
165
166
        if bsz != self.cache_batch_size:
            raise RuntimeError(
                f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. "
                f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})"
            )
167

Casper Hansen's avatar
Casper Hansen committed
168
        if self.start_pos > self.max_seq_len or self.start_pos + seqlen > self.max_seq_len:
169
170
171
172
173
174
175
            # Roll cache to the left
            roll_len = self.start_pos
            self.cache_v = torch.roll(self.cache_v, shifts=-roll_len, dims=2)
            self.cache_k = torch.roll(self.cache_k, shifts=-roll_len, dims=3)
            # Zero out the new part
            self.cache_v[:, :, -roll_len:, :] = 0
            self.cache_k[:, :, :, -roll_len:, :] = 0
176
177
            self.start_pos = 0
            
Casper Hansen's avatar
Casper Hansen committed
178
        xqkv = self.qkv_proj(hidden_states)
179
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
180
        
181
182
183
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
184

Casper's avatar
Casper committed
185
        if seqlen > 1 or not FT_INSTALLED:
Casper Hansen's avatar
Casper Hansen committed
186
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
187
188
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
189

190
191
            if not self.use_alibi:
                xq, xk = apply_rotary_emb(xq, xk, freqs_cis=self.freqs_cis[self.start_pos : self.start_pos + seqlen])
Haotian Tang's avatar
Haotian Tang committed
192

Casper Hansen's avatar
Casper Hansen committed
193
194
            self.cache_k = self.cache_k.to(xq)
            self.cache_v = self.cache_v.to(xq)
Haotian Tang's avatar
Haotian Tang committed
195

Casper Hansen's avatar
Casper Hansen committed
196
197
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
198
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
199
200
201
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Casper Hansen's avatar
Casper Hansen committed
202
203
204
205
206
207
208
209
210
211
            
            try:
                self.cache_v[:bsz, :, self.start_pos : self.start_pos + seqlen, :] = values_store
                self.cache_k[:bsz, :, :, self.start_pos : self.start_pos + seqlen, :] = keys_store
            except Exception as ex:
                print(seqlen, self.max_seq_len)
                print(self.cache_v.shape, self.cache_v[:bsz, :, self.start_pos : self.start_pos + seqlen, :].shape, values_store.shape)
                print(self.cache_k.shape, self.cache_k[:bsz, :, :, self.start_pos : self.start_pos + seqlen, :].shape, keys_store.shape)
                print(ex)
                exit(0)
Casper Hansen's avatar
Casper Hansen committed
212

qwopqwop200's avatar
fix bug  
qwopqwop200 committed
213
214
215
216
            if seqlen == 1:
                xv = self.cache_v[:bsz, :, : self.start_pos + seqlen, :].transpose(1, 2).contiguous()
                xk = self.cache_k[:bsz, :, :, : self.start_pos + seqlen, :].transpose(2, 3).contiguous()
                xk = xk.reshape(xk.shape[:-2] + (self.head_dim,)).transpose(1, 2).contiguous()
Casper's avatar
Casper committed
217
            
Casper Hansen's avatar
Casper Hansen committed
218
219
            keys = xk
            values = xv
220
221
222
223
224

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
225
            past_key_value = (xk, xv) if use_cache else None
Casper Hansen's avatar
Casper Hansen committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
                scores += self.alibi_bias[..., :seqlen]

            if attention_mask is not None:
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
                
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
240
        else:
241
242
243
244
245
246
247
            # xq = xq[:, 0, :, :]
            # xk = xk[:, 0, :, :]
            # xv = xv[:, 0, :, :]
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper Hansen's avatar
Casper Hansen committed
248
            past_key_value = (xk, xv) if use_cache else None
Casper's avatar
Casper committed
249
            attention_weight = ft_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
250
251
252
253
254
255
256
257
258
259
                xq, # query
                xk, # key
                xv, # value
                self.cache_k, # key cache
                self.cache_v, # value cache
                None, # length per sample
                self.alibi_slopes, # alibi slopes
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
260
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
261
            )
Casper Hansen's avatar
Casper Hansen committed
262
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
263
        
Casper Hansen's avatar
Casper Hansen committed
264
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
265
266
267
268
269
        
        if use_cache:
            self.start_pos += seqlen
        else:
            self.start_pos = 0
Haotian Tang's avatar
Haotian Tang committed
270

qwopqwop200's avatar
fix bug  
qwopqwop200 committed
271
        return attn_output, attention_weight, past_key_value