attn.py 12.2 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
import torch
4
import logging
Haotian Tang's avatar
Haotian Tang committed
5
6
import torch.nn as nn
import awq_inference_engine
Casper Hansen's avatar
Casper Hansen committed
7
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
8
from awq.utils.utils import compute_memory_used_pct
Casper Hansen's avatar
Casper Hansen committed
9

Casper's avatar
Casper committed
10
11
12
13
14
try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False
qwopqwop200's avatar
qwopqwop200 committed
15

Casper Hansen's avatar
Casper Hansen committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
    freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
    t = torch.arange(end, device=freqs.device)  # type: ignore
    freqs = torch.outer(t, freqs).float()  # type: ignore
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)  # complex64
    return freqs_cis

def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
    ndim = x.ndim
    assert 0 <= 1 < ndim
    assert freqs_cis.shape == (x.shape[1], x.shape[-1])
    shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
    return freqs_cis.view(*shape)

def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
):
    xq_ = torch.view_as_complex(
        xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    xk_ = torch.view_as_complex(
        xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
    )
    freqs_cis = reshape_for_broadcast(freqs_cis, xq_)
    xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
    return xq_out.type_as(xq), xk_out.type_as(xk)

Casper Hansen's avatar
Casper Hansen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
def gen_slopes(n_heads, alibi_bias_max=8):
    _n_heads = 2 ** math.ceil(math.log2(n_heads))
    m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
    m = m.mul(alibi_bias_max / _n_heads)
    slopes = 1.0 / torch.pow(2, m)
    if _n_heads != n_heads:
        slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
    return slopes.view(1, n_heads, 1, 1)


def build_alibi_bias(
    n_heads, seq_len, full=False, alibi_bias_max=8, dtype=torch.float32
):
    alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
    if full:
        alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32).view(
            1, 1, seq_len, 1
        )
        alibi_bias = alibi_bias.abs().mul(-1)
    slopes = gen_slopes(n_heads, alibi_bias_max)
    alibi_bias = alibi_bias * slopes
    slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
    return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)

Haotian Tang's avatar
Haotian Tang committed
70

Casper Hansen's avatar
Casper Hansen committed
71
class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
72
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
73
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
74
75
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
76
77
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
78
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
79
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
80
81
82
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
83
        self.use_alibi = use_alibi
84
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
85
86
87
        self.max_seq_len = max_seq_len
        self.attention_shapes = self._get_attention_shapes(attention_shapes, max_seq_len)
        self._initialize_cache(dev)
Casper Hansen's avatar
Casper Hansen committed
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        if use_alibi:
            alibi_slopes, alibi_bias = build_alibi_bias(self.n_heads, max_seq_len)
            self.alibi_slopes = alibi_slopes.float().to(dev)
            self.alibi_bias = alibi_bias.float().to(dev)
            self.rotary_dim = 0
            self.is_neox = False
        else:
            self.freqs_cis = precompute_freqs_cis(
                hidden_size // n_heads,
                max_seq_len * 2,
            ).to(dev)
            self.rotary_dim = self.head_dim
            self.alibi_slopes = None
            self.is_neox = True
    
    def _initialize_cache(self, dev):
        self.cache_v = (
            torch.zeros(self.attention_shapes["cache_v"]).to(dev).half()
        )
        
        self.cache_k = (
            torch.zeros(self.attention_shapes["cache_k"]).to(dev).half()
        )
    
    def _get_attention_shapes(self, attention_shapes, max_seq_len):
Casper Hansen's avatar
Casper Hansen committed
114
        if attention_shapes is not None:
115
            attention_shapes = attention_shapes
Casper Hansen's avatar
Casper Hansen committed
116
117

        elif self.n_kv_heads == 0:
118
            attention_shapes = {
Casper Hansen's avatar
Casper Hansen committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (-1, self.n_heads, self.head_dim),
                "xq_slice": lambda xqkv: xqkv[:, :, 0],
                "xk_slice": lambda xqkv: xqkv[:, :, 1],
                "xv_slice": lambda xqkv: xqkv[:, :, 2],
                "xq_view": (self.n_heads, self.head_dim),
                "xk_view": (self.n_heads, self.head_dim),
                "xv_view": (self.n_heads, self.head_dim),
                "xk_reshape": (self.n_heads, self.head_dim // 8, 8),
                "single_xq_view": (self.n_heads, self.head_dim),
                "single_xk_view": (self.n_heads, self.head_dim),
                "single_xv_view": (self.n_heads, self.head_dim)
            }

        else:
137
            attention_shapes = {
Casper Hansen's avatar
Casper Hansen committed
138
139
140
141
142
                # following fastertransformer definition
                "cache_v": (self.cache_batch_size, self.n_kv_heads, max_seq_len, self.head_dim,),
                # 8: pack 8 fp16 in FT, if fp32 then use 4
                "cache_k": (self.cache_batch_size, self.n_kv_heads, self.head_dim // 8, max_seq_len, 8,),
                "xqkv_view": (self.n_heads + self.n_kv_heads * 2, self.head_dim),
143
                "xq_slice": lambda xqkv: xqkv[:, :, 0 : self.n_heads],
Casper Hansen's avatar
Casper Hansen committed
144
145
                "xk_slice": lambda xqkv: xqkv[:, :, self.n_heads : (self.n_heads + self.n_kv_heads)],
                "xv_slice": lambda xqkv: xqkv[:, :, -self.n_kv_heads :],
146
                "xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
147
148
149
                "xk_view": (self.n_kv_heads, self.head_dim),
                "xv_view": (self.n_kv_heads, self.head_dim),
                "xk_reshape": (self.n_kv_heads, self.head_dim // 8, 8),
150
                "single_xq_view": (self.n_heads, self.head_dim),
Casper Hansen's avatar
Casper Hansen committed
151
152
153
                "single_xk_view": (self.n_kv_heads, self.head_dim),
                "single_xv_view": (self.n_kv_heads, self.head_dim)
            }
154
        
155
        return attention_shapes
156
    
Casper Hansen's avatar
Casper Hansen committed
157
158
    def forward(
        self,
159
        hidden_states:torch.Tensor, past_key_value=None, attention_mask=None, position_ids=None, output_attentions=False, use_cache=False
Casper Hansen's avatar
Casper Hansen committed
160
161
    ):
        bsz, seqlen, _ = hidden_states.shape
162
163
164
165
166
        if bsz != self.cache_batch_size:
            raise RuntimeError(
                f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. "
                f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})"
            )
167

Casper Hansen's avatar
Casper Hansen committed
168
        if self.start_pos > self.max_seq_len or self.start_pos + seqlen > self.max_seq_len:
169
170
171
172
173
            logging.warning('You have exceeded max_new_tokens, resetting cache...')
            self._initialize_cache(hidden_states.device)
            self.start_pos = 0

        elif seqlen > self.max_seq_len:
Casper Hansen's avatar
Casper Hansen committed
174
175
176
177
178
179
180
181
182
183
            memory_used = compute_memory_used_pct(hidden_states.device)

            if memory_used <= 80:
                logging.warning('Input sequence length > max_seq_len, increasing and resetting cache...')
                self.max_seq_len += self.max_seq_len
                self.attention_shapes = self._get_attention_shapes(None, self.max_seq_len)
                self._initialize_cache(hidden_states.device)
                self.start_pos = 0
            else:
                logging.error('Input sequence length > max_seq_len, memory is filled, exiting...')
184
            
Casper Hansen's avatar
Casper Hansen committed
185
        xqkv = self.qkv_proj(hidden_states)
186
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
187
        
188
189
190
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
191

Casper's avatar
Casper committed
192
        if seqlen > 1 or not FT_INSTALLED:
Casper Hansen's avatar
Casper Hansen committed
193
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
194
195
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
196

197
198
            if not self.use_alibi:
                xq, xk = apply_rotary_emb(xq, xk, freqs_cis=self.freqs_cis[self.start_pos : self.start_pos + seqlen])
Haotian Tang's avatar
Haotian Tang committed
199

Casper Hansen's avatar
Casper Hansen committed
200
201
            self.cache_k = self.cache_k.to(xq)
            self.cache_v = self.cache_v.to(xq)
Haotian Tang's avatar
Haotian Tang committed
202

Casper Hansen's avatar
Casper Hansen committed
203
204
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
205
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
206
207
208
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Casper Hansen's avatar
Casper Hansen committed
209
210
211
212
213
214
215
216
217
218
            
            try:
                self.cache_v[:bsz, :, self.start_pos : self.start_pos + seqlen, :] = values_store
                self.cache_k[:bsz, :, :, self.start_pos : self.start_pos + seqlen, :] = keys_store
            except Exception as ex:
                print(seqlen, self.max_seq_len)
                print(self.cache_v.shape, self.cache_v[:bsz, :, self.start_pos : self.start_pos + seqlen, :].shape, values_store.shape)
                print(self.cache_k.shape, self.cache_k[:bsz, :, :, self.start_pos : self.start_pos + seqlen, :].shape, keys_store.shape)
                print(ex)
                exit(0)
Casper Hansen's avatar
Casper Hansen committed
219

qwopqwop200's avatar
fix bug  
qwopqwop200 committed
220
221
222
223
            if seqlen == 1:
                xv = self.cache_v[:bsz, :, : self.start_pos + seqlen, :].transpose(1, 2).contiguous()
                xk = self.cache_k[:bsz, :, :, : self.start_pos + seqlen, :].transpose(2, 3).contiguous()
                xk = xk.reshape(xk.shape[:-2] + (self.head_dim,)).transpose(1, 2).contiguous()
Casper's avatar
Casper committed
224
            
Casper Hansen's avatar
Casper Hansen committed
225
226
            keys = xk
            values = xv
227
228
229
230
231

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
232
            past_key_value = (xk, xv) if use_cache else None
Casper Hansen's avatar
Casper Hansen committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
                scores += self.alibi_bias[..., :seqlen]

            if attention_mask is not None:
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
                
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
247
        else:
248
249
250
251
252
253
254
            # xq = xq[:, 0, :, :]
            # xk = xk[:, 0, :, :]
            # xv = xv[:, 0, :, :]
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper Hansen's avatar
Casper Hansen committed
255
            past_key_value = (xk, xv) if use_cache else None
Casper's avatar
Casper committed
256
            attention_weight = ft_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
257
258
259
260
261
262
263
264
265
266
                xq, # query
                xk, # key
                xv, # value
                self.cache_k, # key cache
                self.cache_v, # value cache
                None, # length per sample
                self.alibi_slopes, # alibi slopes
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
267
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
268
            )
Casper Hansen's avatar
Casper Hansen committed
269
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
270
        
Casper Hansen's avatar
Casper Hansen committed
271
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
272
273
274
275
276
        
        if use_cache:
            self.start_pos += seqlen
        else:
            self.start_pos = 0
Haotian Tang's avatar
Haotian Tang committed
277

qwopqwop200's avatar
fix bug  
qwopqwop200 committed
278
        return attn_output, attention_weight, past_key_value