attn.py 9.3 KB
Newer Older
1
import os
Casper Hansen's avatar
Casper Hansen committed
2
import math
Haotian Tang's avatar
Haotian Tang committed
3
4
import torch
import torch.nn as nn
Casper Hansen's avatar
Casper Hansen committed
5
from torch.nn import functional as F
Casper Hansen's avatar
Casper Hansen committed
6
from awq.modules.fused.cache import WindowedCache
7
from awq.utils.fused_utils import get_attention_shapes
Casper Hansen's avatar
Casper Hansen committed
8

Casper's avatar
Casper committed
9
10
11
12
13
try:
    import ft_inference_engine
    FT_INSTALLED = True
except:
    FT_INSTALLED = False
qwopqwop200's avatar
qwopqwop200 committed
14

Casper Hansen's avatar
Casper Hansen committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class RoPE(nn.Module):
    def __init__(self, hidden_size, n_heads, max_seq_len, device):
        super(RoPE, self).__init__()
        
        self.freqs_cis = nn.Parameter(
            self.precompute_freqs_cis(hidden_size // n_heads, max_seq_len * 2).to(device),
            requires_grad=False
        )

    @staticmethod
    def precompute_freqs_cis(dim: int, end: int, theta=10000.0):
        freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
        t = torch.arange(end)
        freqs = torch.outer(t, freqs).float()
        freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        return freqs_cis

    @staticmethod
    def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
        ndim = x.ndim
        assert 0 <= 1 < ndim
        assert freqs_cis.shape == (x.shape[1], x.shape[-1])
        shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)

    def forward(self, xq: torch.Tensor, xk: torch.Tensor, start_pos: int, seqlen: int):
        xq_ = torch.view_as_complex(
            xq.float().reshape(*xq.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        xk_ = torch.view_as_complex(
            xk.float().reshape(*xk.shape[:-1], 2, -1).transpose(-2, -1).contiguous()
        )
        freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen]
        freqs_cis = self.reshape_for_broadcast(freqs_cis, xq_).to(xq_.device)
        
        xq_out = torch.view_as_real(xq_ * freqs_cis).transpose(-2, -1).flatten(3)
        xk_out = torch.view_as_real(xk_ * freqs_cis).transpose(-2, -1).flatten(3)
        
        return xq_out.type_as(xq), xk_out.type_as(xk)
Casper Hansen's avatar
Casper Hansen committed
54

Casper Hansen's avatar
Casper Hansen committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
class ALiBi(nn.Module):
    def __init__(self, n_heads, max_seq_len, device, alibi_bias_max=8):
        super(ALiBi, self).__init__()
        
        # Initialize ALiBi slopes and bias
        slopes, bias = self.build_alibi_bias(n_heads, max_seq_len, alibi_bias_max=alibi_bias_max)
        self.slopes = nn.Parameter(slopes.float().to(device), requires_grad=False)
        self.bias = nn.Parameter(bias.float().to(device), requires_grad=False)

    @staticmethod
    def gen_slopes(n_heads, alibi_bias_max=8):
        _n_heads = 2 ** math.ceil(math.log2(n_heads))
        m = torch.arange(1, _n_heads + 1, dtype=torch.float32)
        m = m.mul(alibi_bias_max / _n_heads)
        slopes = 1.0 / torch.pow(2, m)
        
        if _n_heads != n_heads:
            slopes = torch.cat([slopes[1::2], slopes[::2]])[:n_heads]
            
        return slopes.view(1, n_heads, 1, 1)

    @staticmethod
    def build_alibi_bias(n_heads, seq_len, alibi_bias_max=8, dtype=torch.float32):
        alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32).view(1, 1, 1, seq_len)
        slopes = ALiBi.gen_slopes(n_heads, alibi_bias_max)
        alibi_bias = alibi_bias * slopes
        slopes = slopes.squeeze(0).squeeze(-1).squeeze(-1)
        return slopes.to(dtype=dtype), alibi_bias.to(dtype=dtype)
    
    def forward(self, scores, seqlen):
        scores += self.bias[..., :seqlen]
        return scores
Casper Hansen's avatar
Casper Hansen committed
87
88

class QuantAttentionFused(nn.Module):
Casper Hansen's avatar
Casper Hansen committed
89
    def __init__(self, hidden_size, n_heads, n_kv_heads, qkv_layer, o_proj, dev, max_seq_len, 
90
                       use_alibi=False, attention_shapes=None):
Casper Hansen's avatar
Casper Hansen committed
91
92
        super().__init__()
        self.hidden_size = hidden_size
Casper Hansen's avatar
Casper Hansen committed
93
94
        self.n_heads = n_heads
        self.n_kv_heads = n_kv_heads
95
        self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
Casper Hansen's avatar
Casper Hansen committed
96
        self.head_dim = self.hidden_size // n_heads
Casper Hansen's avatar
Casper Hansen committed
97
98
99
        self.qkv_proj = qkv_layer
        self.o_proj = o_proj
        self.start_pos = 0
Casper Hansen's avatar
Casper Hansen committed
100
        self.use_alibi = use_alibi
101
        self.cache_batch_size = int(os.getenv("AWQ_BATCH_SIZE", "1"))
102
        self.max_seq_len = max_seq_len
Casper Hansen's avatar
Casper Hansen committed
103
104
105
106
107
108
109

        # attention shapes for self attention
        self.attention_shapes = get_attention_shapes(
            attention_shapes, max_seq_len, self.cache_batch_size, n_heads, n_kv_heads, self.head_dim
        )
        # cache store that rolls cache
        self.cache = WindowedCache(
Casper's avatar
Casper committed
110
            self.attention_shapes["cache_v"], self.attention_shapes["cache_k"], self.max_seq_len, dev
Casper Hansen's avatar
Casper Hansen committed
111
        )
Casper Hansen's avatar
Casper Hansen committed
112

113
        if use_alibi:
Casper Hansen's avatar
Casper Hansen committed
114
            self.alibi = ALiBi(n_heads, max_seq_len, dev)
115
116
117
            self.rotary_dim = 0
            self.is_neox = False
        else:
Casper Hansen's avatar
Casper Hansen committed
118
119
            self.alibi = None
            self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev)
120
121
122
            self.rotary_dim = self.head_dim
            self.is_neox = True
    
Casper Hansen's avatar
Casper Hansen committed
123
    def forward(self, hidden_states:torch.Tensor, attention_mask=None, *args, **kwargs):
Casper Hansen's avatar
Casper Hansen committed
124
        bsz, seqlen, _ = hidden_states.shape
125

126
127
128
129
130
        if bsz != self.cache_batch_size:
            raise RuntimeError(
                f"Batch size is incorrectly set - input batch size {bsz}, kv-cache batch size {self.cache_batch_size}. "
                f"Use: AutoAWQForCausalLM.from_quantized(batch_size={bsz})"
            )
131

Casper's avatar
Casper committed
132
133
134
        will_cache_be_exceeded = self.start_pos + seqlen > self.max_seq_len

        # Reset and avoid retaining state when processing context
135
        if will_cache_be_exceeded and seqlen > 1:
Casper's avatar
Casper committed
136
137
138
139
            self.start_pos = self.cache.roll_kv_n_steps(self.start_pos, n=self.start_pos)
        # Slowly roll out old tokens without performance hit if exceeded during decoding 
        elif will_cache_be_exceeded and seqlen == 1:
            self.start_pos = self.cache.roll_kv_n_steps(self.start_pos, n=100)
140
            
Casper Hansen's avatar
Casper Hansen committed
141
        xqkv = self.qkv_proj(hidden_states)
142
        xqkv = xqkv.view((bsz, seqlen) + self.attention_shapes["xqkv_view"])
Casper Hansen's avatar
Casper Hansen committed
143
        
144
145
146
        xq = self.attention_shapes["xq_slice"](xqkv)
        xk = self.attention_shapes["xk_slice"](xqkv)
        xv = self.attention_shapes["xv_slice"](xqkv)
Haotian Tang's avatar
Haotian Tang committed
147

Casper's avatar
Casper committed
148
        if seqlen > 1 or not FT_INSTALLED:
Casper Hansen's avatar
Casper Hansen committed
149
            xq = xq.view((bsz, seqlen) + self.attention_shapes["xq_view"])
150
151
            xk = xk.view((bsz, seqlen) + self.attention_shapes["xk_view"])
            xv = xv.view((bsz, seqlen) + self.attention_shapes["xv_view"])
Haotian Tang's avatar
Haotian Tang committed
152

153
            if not self.use_alibi:
Casper Hansen's avatar
Casper Hansen committed
154
                xq, xk = self.rope.forward(xq, xk, self.start_pos, seqlen)
Haotian Tang's avatar
Haotian Tang committed
155

Casper Hansen's avatar
Casper Hansen committed
156
            self.cache.to(xq)
Haotian Tang's avatar
Haotian Tang committed
157

Casper Hansen's avatar
Casper Hansen committed
158
159
            values_store = xv.transpose(2, 1)
            keys_store = (
Casper Hansen's avatar
Casper Hansen committed
160
                xk.reshape((bsz, seqlen) + self.attention_shapes["xk_reshape"])
Casper Hansen's avatar
Casper Hansen committed
161
162
163
                .permute(0, 2, 3, 1, 4)
                .contiguous()
            )
Casper Hansen's avatar
Casper Hansen committed
164
            
Casper Hansen's avatar
Casper Hansen committed
165
            self.cache.update_kv(values_store, keys_store, bsz, self.start_pos, seqlen)
Casper Hansen's avatar
Casper Hansen committed
166

Casper's avatar
Casper committed
167
            # Only necessary to retrieve from cache when we are not processing context
qwopqwop200's avatar
fix bug  
qwopqwop200 committed
168
            if seqlen == 1:
Casper Hansen's avatar
Casper Hansen committed
169
                xv, xk = self.cache.get_kv(bsz, self.start_pos, seqlen, self.head_dim)
170

Casper's avatar
Casper committed
171
            
Casper Hansen's avatar
Casper Hansen committed
172
173
            keys = xk
            values = xv
174
175
176
177
178

            if self.n_kv_groups != 0:
                keys = torch.repeat_interleave(keys, dim=2, repeats=self.n_kv_groups)
                values = torch.repeat_interleave(values, dim=2, repeats=self.n_kv_groups)
            
Casper Hansen's avatar
Casper Hansen committed
179
180
181
182
183
184
            xq = xq.transpose(1, 2)
            keys = keys.transpose(1, 2)
            values = values.transpose(1, 2)
            scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim)

            if self.use_alibi:
Casper Hansen's avatar
Casper Hansen committed
185
                scores = self.alibi.forward(scores, seqlen)
Casper Hansen's avatar
Casper Hansen committed
186

187
188
            # When seqlen is 1, there is nothing else to attend to
            if attention_mask is not None and seqlen > 1:
Casper Hansen's avatar
Casper Hansen committed
189
190
191
192
                scores = scores + attention_mask  # (bs, n_local_heads, slen, cache_len + slen)
            scores = F.softmax(scores.float(), dim=-1).type_as(xq)
            output = torch.matmul(scores, values)  # (bs, n_local_heads, slen, head_dim)
            attention_weight = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
Casper Hansen's avatar
Casper Hansen committed
193
        else:
194
195
196
197
            xq = xq.view((bsz,) + self.attention_shapes["single_xq_view"])
            xk = xk.view((bsz,) + self.attention_shapes["single_xk_view"])
            xv = xv.view((bsz,) + self.attention_shapes["single_xv_view"])

Casper Hansen's avatar
Casper Hansen committed
198
            alibi_slopes = self.alibi.slopes if self.alibi is not None else None
Casper's avatar
Casper committed
199
            attention_weight = ft_inference_engine.single_query_attention(
Casper Hansen's avatar
Casper Hansen committed
200
201
202
                xq, # query
                xk, # key
                xv, # value
Casper Hansen's avatar
Casper Hansen committed
203
204
                self.cache.k, # key cache
                self.cache.v, # value cache
Casper Hansen's avatar
Casper Hansen committed
205
                None, # length per sample
Casper Hansen's avatar
Casper Hansen committed
206
                alibi_slopes, # alibi slopes
Casper Hansen's avatar
Casper Hansen committed
207
208
209
                self.start_pos, # timestep
                self.rotary_dim, # rotary embedding dimension
                10000, # rotary embedding base
210
                self.is_neox, # is neox
Casper Hansen's avatar
Casper Hansen committed
211
            )
Casper Hansen's avatar
Casper Hansen committed
212
            attention_weight = attention_weight.reshape(bsz, 1, -1)
Casper Hansen's avatar
Casper Hansen committed
213
        
Casper Hansen's avatar
Casper Hansen committed
214
        attn_output = self.o_proj(attention_weight)
Casper Hansen's avatar
Casper Hansen committed
215
        self.start_pos += seqlen
Haotian Tang's avatar
Haotian Tang committed
216

Casper Hansen's avatar
Casper Hansen committed
217
218
        # past_key_value is replaced with cache_v, cache_k, returning empty data
        past_key_value = [torch.Tensor([ [ [[0]], [[0]], [[0]] ] ])]
219
        return attn_output, attention_weight, past_key_value