model_runner.py 43.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""ModelRunner runs the forward passes of the models."""
15

16
import datetime
17
import gc
Shuo Yang's avatar
Shuo Yang committed
18
import json
19
import logging
20
import os
21
import time
22
23
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
24
25

import torch
26
import torch.distributed as dist
27
28
29
30
31

from sglang.srt.configs.device_config import DeviceConfig
from sglang.srt.configs.load_config import LoadConfig
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
from sglang.srt.distributed import (
zhyncs's avatar
zhyncs committed
32
33
34
    get_tp_group,
    init_distributed_environment,
    initialize_model_parallel,
35
    set_custom_all_reduce,
zhyncs's avatar
zhyncs committed
36
)
37
from sglang.srt.distributed.parallel_state import monkey_patch_vllm_parallel_state
38
39
from sglang.srt.layers.dp_attention import (
    get_attention_tp_group,
40
    get_attention_tp_size,
41
42
    initialize_dp_attention,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
43
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
44
from sglang.srt.layers.quantization import monkey_patch_isinstance_for_vllm_base_layer
45
from sglang.srt.layers.sampler import Sampler
46
from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
47
from sglang.srt.lora.lora_manager import LoRAManager
48
from sglang.srt.managers.schedule_batch import global_server_args_dict
49
from sglang.srt.mem_cache.memory_pool import (
Shuo Yang's avatar
Shuo Yang committed
50
    DoubleSparseTokenToKVPool,
51
52
53
    MHATokenToKVPool,
    MLATokenToKVPool,
    ReqToTokenPool,
54
    TokenToKVPoolAllocator,
55
)
Lianmin Zheng's avatar
Lianmin Zheng committed
56
from sglang.srt.mem_cache.paged_allocator import PagedTokenToKVPoolAllocator
Yineng Zhang's avatar
Yineng Zhang committed
57
from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner
58
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
59
from sglang.srt.model_loader import get_model
Lianmin Zheng's avatar
Lianmin Zheng committed
60
61
62
63
64
65
from sglang.srt.model_loader.loader import (
    DefaultModelLoader,
    device_loading_context,
    get_model_loader,
)
from sglang.srt.model_loader.utils import set_default_torch_dtype
66
from sglang.srt.model_loader.weight_utils import default_weight_loader
67
from sglang.srt.patch_torch import monkey_patch_torch_reductions
68
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Lianmin Zheng's avatar
Lianmin Zheng committed
69
from sglang.srt.server_args import ServerArgs
70
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
71
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
72
from sglang.srt.utils import (
73
    MultiprocessingSerializer,
74
    enable_show_time_cost,
75
    get_available_gpu_memory,
76
    init_custom_process_group,
bjmsong's avatar
bjmsong committed
77
    is_cuda,
HAI's avatar
HAI committed
78
    is_hip,
79
    monkey_patch_p2p_access_check,
80
    monkey_patch_vllm_gguf_config,
81
    set_cpu_offload_max_bytes,
82
    set_cuda_arch,
83
)
84

Ying Sheng's avatar
Ying Sheng committed
85
logger = logging.getLogger(__name__)
Lianmin Zheng's avatar
Lianmin Zheng committed
86

87
88
89
90
SGLANG_CI_SMALL_KV_SIZE = os.getenv("SGLANG_CI_SMALL_KV_SIZE", None)
UNBALANCED_MODEL_LOADING_TIMEOUT_S = 300


Lianmin Zheng's avatar
Lianmin Zheng committed
91
class ModelRunner:
92
93
    """ModelRunner runs the forward passes of the models."""

Lianmin Zheng's avatar
Lianmin Zheng committed
94
95
    def __init__(
        self,
96
        model_config: ModelConfig,
97
98
99
100
101
        mem_fraction_static: float,
        gpu_id: int,
        tp_rank: int,
        tp_size: int,
        nccl_port: int,
Lianmin Zheng's avatar
Lianmin Zheng committed
102
        server_args: ServerArgs,
103
        is_draft_worker: bool = False,
104
105
        req_to_token_pool: Optional[ReqToTokenPool] = None,
        token_to_kv_pool_allocator: Optional[TokenToKVPoolAllocator] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
106
    ):
107
        # Parse args
Lianmin Zheng's avatar
Lianmin Zheng committed
108
109
        self.model_config = model_config
        self.mem_fraction_static = mem_fraction_static
Zhang, Liangang's avatar
Zhang, Liangang committed
110
        self.device = server_args.device
111
        self.gpu_id = gpu_id
Lianmin Zheng's avatar
Lianmin Zheng committed
112
113
        self.tp_rank = tp_rank
        self.tp_size = tp_size
Zhang, Liangang's avatar
Zhang, Liangang committed
114
        self.dist_port = nccl_port
Lianmin Zheng's avatar
Lianmin Zheng committed
115
        self.server_args = server_args
116
        self.is_draft_worker = is_draft_worker
117
118
        self.is_generation = model_config.is_generation
        self.is_multimodal = model_config.is_multimodal
119
        self.should_log = tp_rank == 0
120
121
122
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
123
        self.page_size = server_args.page_size
124
125
        self.req_to_token_pool = req_to_token_pool
        self.token_to_kv_pool_allocator = token_to_kv_pool_allocator
Ke Bao's avatar
Ke Bao committed
126

127
        # Model-specific adjustment
128
        self.model_specific_adjustment()
Shuo Yang's avatar
Shuo Yang committed
129

130
131
        if server_args.show_time_cost:
            enable_show_time_cost()
132

133
        if server_args.disable_outlines_disk_cache:
134
135
            from outlines.caching import disable_cache

136
137
            disable_cache()

138
        # Global vars
139
140
        global_server_args_dict.update(
            {
141
142
                "attention_backend": server_args.attention_backend,
                "sampling_backend": server_args.sampling_backend,
143
                "triton_attention_reduce_in_fp32": server_args.triton_attention_reduce_in_fp32,
Ke Bao's avatar
Ke Bao committed
144
                "disable_mla": server_args.disable_mla,
145
                "torchao_config": server_args.torchao_config,
146
                "enable_nan_detection": server_args.enable_nan_detection,
Ke Bao's avatar
Ke Bao committed
147
                "enable_dp_attention": server_args.enable_dp_attention,
xiaobochen's avatar
xiaobochen committed
148
                "enable_ep_moe": server_args.enable_ep_moe,
149
                "enable_deepep_moe": server_args.enable_deepep_moe,
150
                "device": server_args.device,
151
152
                "speculative_accept_threshold_single": server_args.speculative_accept_threshold_single,
                "speculative_accept_threshold_acc": server_args.speculative_accept_threshold_acc,
153
                "enable_flashinfer_mla": server_args.enable_flashinfer_mla,
lukec's avatar
lukec committed
154
                "enable_flashmla": server_args.enable_flashmla,
155
                "disable_radix_cache": server_args.disable_radix_cache,
156
                "flashinfer_mla_disable_ragged": server_args.flashinfer_mla_disable_ragged,
157
158
                "debug_tensor_dump_output_folder": server_args.debug_tensor_dump_output_folder,
                "debug_tensor_dump_inject": server_args.debug_tensor_dump_inject,
159
160
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
161

162
        # CPU offload
163
164
        set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))

165
        # Get memory before model loading
166
        min_per_gpu_memory = self.init_torch_distributed()
167

168
169
170
171
172
        # If it is a draft model tp_group can be different.
        self.initialize(min_per_gpu_memory)

    def initialize(self, min_per_gpu_memory: float):
        server_args = self.server_args
173
174
175
176
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=self.server_args.enable_memory_saver
        )

177
        # Load the model
178
        self.sampler = Sampler()
179
        self.load_model()
180

181
        # Apply torchao quantization
182
183
184
185
186
187
        torchao_applied = getattr(self.model, "torchao_applied", False)
        # In layered loading, torchao may have been applied
        if not torchao_applied:
            apply_torchao_config_to_model(
                self.model, global_server_args_dict["torchao_config"]
            )
188

189
        # Apply torch TP if the model supports it
190
191
192
193
        supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
        if self.tp_size > 1 and supports_torch_tp:
            self.apply_torch_tp()

194
        # Init lora
195
196
        if server_args.lora_paths is not None:
            self.init_lora_manager()
197
198

        # Init memory pool and attention backends
199
200
        self.init_memory_pool(
            min_per_gpu_memory,
201
            server_args.max_running_requests,
202
203
            server_args.max_total_tokens,
        )
Zhang, Liangang's avatar
Zhang, Liangang committed
204
205
206
207
208
        if self.device == "cuda":
            self.init_cublas()
            self.init_attention_backend()
            self.init_cuda_graphs()
        else:
209
            self.cuda_graph_runner = None
Zhang, Liangang's avatar
Zhang, Liangang committed
210
            self.init_attention_backend()
211

James Liu's avatar
James Liu committed
212
213
214
215
        # auxiliary hidden capture mode. TODO: expose this to server args?
        if self.spec_algorithm.is_eagle3() and not self.is_draft_worker:
            self.model.set_eagle3_layers_to_capture()

216
217
218
219
220
221
222
223
224
225
226
227
228
229
    def model_specific_adjustment(self):
        server_args = self.server_args

        if (
            self.model_config.attention_arch == AttentionArch.MLA
            and not server_args.disable_mla
        ):
            # TODO: add MLA optimization on CPU
            if server_args.device != "cpu":
                if server_args.enable_flashinfer_mla:
                    logger.info(
                        "MLA optimization is turned on. Use flashinfer mla backend."
                    )
                    server_args.attention_backend = "flashinfer_mla"
lukec's avatar
lukec committed
230
231
232
                elif server_args.enable_flashmla:
                    logger.info("MLA optimization is turned on. Use flashmla decode.")
                    server_args.attention_backend = "flashmla"
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
                else:
                    logger.info("MLA optimization is turned on. Use triton backend.")
                    server_args.attention_backend = "triton"

        if server_args.enable_double_sparsity:
            logger.info(
                "Double sparsity optimization is turned on. Use triton backend without CUDA graph."
            )
            server_args.attention_backend = "triton"
            server_args.disable_cuda_graph = True
            if server_args.ds_heavy_channel_type is None:
                raise ValueError(
                    "Please specify the heavy channel type for double sparsity optimization."
                )
            self.init_double_sparsity_channel_config(server_args.ds_heavy_channel_type)

        if self.is_multimodal:
            self.mem_fraction_static *= 0.95
            logger.info(
                f"Automatically reduce --mem-fraction-static to {self.mem_fraction_static:.3f} "
                f"because this is a multimodal model."
            )

            if self.model_config.hf_config.architectures == [
                "MllamaForConditionalGeneration"
            ]:
                logger.info("Automatically turn off --chunked-prefill-size for mllama.")
                server_args.chunked_prefill_size = -1

            if self.model_config.hf_config.architectures == [
                "Qwen2VLForConditionalGeneration"
264
265
            ] or self.model_config.hf_config.architectures == [
                "Qwen2_5_VLForConditionalGeneration"
266
            ]:
267
                # TODO: qwen2-vl series does not support radix cache now, set disable_radix_cache=True automatically
268
                logger.info(
269
                    "Automatically turn off --chunked-prefill-size and disable radix cache for qwen-vl series."
270
271
272
273
                )
                server_args.chunked_prefill_size = -1
                server_args.disable_radix_cache = True

274
275
276
            if self.model_config.hf_config.architectures == ["DeepseekVL2ForCausalLM"]:
                # TODO: deepseek-vl2 does not support radix cache now, set disable_radix_cache=True automatically
                logger.info(
277
                    "Automatically turn off --chunked-prefill-size and disable radix cache for deepseek-vl2."
278
279
280
281
                )
                server_args.chunked_prefill_size = -1
                server_args.disable_radix_cache = True

282
283
284
        if server_args.enable_deepep_moe:
            logger.info("DeepEP is turned on.")

285
    def init_torch_distributed(self):
286
        logger.info("Init torch distributed begin.")
287

288
289
290
291
292
293
294
295
        try:
            torch.get_device_module(self.device).set_device(self.gpu_id)
        except Exception:
            logger.warning(
                f"Context: {self.device=} {self.gpu_id=} {os.environ.get('CUDA_VISIBLE_DEVICES')=} {self.tp_rank=} {self.tp_size=}"
            )
            raise

Zhang, Liangang's avatar
Zhang, Liangang committed
296
297
        if self.device == "cuda":
            backend = "nccl"
298
        elif self.device == "xpu":
299
            backend = "xccl"
300
301
        elif self.device == "hpu":
            backend = "hccl"
302
303
        elif self.device == "cpu":
            backend = "gloo"
304

305
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
306
        if not self.server_args.enable_p2p_check:
307
308
            monkey_patch_p2p_access_check()

309
        if self.server_args.dist_init_addr:
Zhang, Liangang's avatar
Zhang, Liangang committed
310
            dist_init_method = f"tcp://{self.server_args.dist_init_addr}"
311
        else:
Zhang, Liangang's avatar
Zhang, Liangang committed
312
            dist_init_method = f"tcp://127.0.0.1:{self.dist_port}"
313
        set_custom_all_reduce(not self.server_args.disable_custom_all_reduce)
314
315

        if not self.is_draft_worker:
Mick's avatar
Mick committed
316
            # Only initialize the distributed environment on the target model worker.
317
318
319
320
321
322
            init_distributed_environment(
                backend=backend,
                world_size=self.tp_size,
                rank=self.tp_rank,
                local_rank=self.gpu_id,
                distributed_init_method=dist_init_method,
323
                timeout=self.server_args.dist_timeout,
324
325
            )
            initialize_model_parallel(tensor_model_parallel_size=self.tp_size)
326
327
328
329
330
331
            initialize_dp_attention(
                enable_dp_attention=self.server_args.enable_dp_attention,
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                dp_size=self.server_args.dp_size,
            )
332

333
        min_per_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
334
            self.device, self.gpu_id, distributed=self.tp_size > 1
335
        )
336
        self.tp_group = get_tp_group()
337
        self.attention_tp_group = get_attention_tp_group()
338

339
        # Check memory for tensor parallelism
340
        local_gpu_memory = get_available_gpu_memory(self.device, self.gpu_id)
341
        if self.tp_size > 1:
342
            if min_per_gpu_memory < local_gpu_memory * 0.9:
343
                raise ValueError(
344
345
                    "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                    f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
346
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
347

348
349
350
        logger.info(
            f"Init torch distributed ends. mem usage={(before_avail_memory - local_gpu_memory):.2f} GB"
        )
351
        return min_per_gpu_memory
352

Lianmin Zheng's avatar
Lianmin Zheng committed
353
    def load_model(self):
354
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
355
        logger.info(
Zhang, Liangang's avatar
Zhang, Liangang committed
356
            f"Load weight begin. avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
357
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
358
359

        # This can reduce thread conflicts and speed up weight loading.
360
361
        if self.device != "cpu":
            torch.set_num_threads(1)
Zhang, Liangang's avatar
Zhang, Liangang committed
362
363
364
365
366
367
        if self.device == "cuda":
            if torch.cuda.get_device_capability()[0] < 8:
                logger.info(
                    "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
                )
                self.server_args.dtype = "float16"
368
                self.model_config.dtype = torch.float16
Zhang, Liangang's avatar
Zhang, Liangang committed
369
370
                if torch.cuda.get_device_capability()[1] < 5:
                    raise RuntimeError("SGLang only supports sm75 and above.")
Lianmin Zheng's avatar
Lianmin Zheng committed
371

372
373
        set_cuda_arch()

374
        # Prepare the model config
375
376
377
378
        self.load_config = LoadConfig(
            load_format=self.server_args.load_format,
            download_dir=self.server_args.download_dir,
        )
379
380
        if self.server_args.load_format == "gguf":
            monkey_patch_vllm_gguf_config()
381
382

        # Load the model
383
384
        # Remove monkey_patch when linear.py quant remove dependencies with vllm
        monkey_patch_vllm_parallel_state()
385
386
        monkey_patch_isinstance_for_vllm_base_layer()

387
388
389
390
391
392
        with self.memory_saver_adapter.region():
            self.model = get_model(
                model_config=self.model_config,
                load_config=self.load_config,
                device_config=DeviceConfig(self.device),
            )
393
        monkey_patch_vllm_parallel_state(reverse=True)
394
        monkey_patch_isinstance_for_vllm_base_layer(reverse=True)
395

bjmsong's avatar
bjmsong committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        if self.server_args.kv_cache_dtype == "fp8_e4m3":
            if self.server_args.quantization_param_path is not None:
                if callable(getattr(self.model, "load_kv_cache_scales", None)):
                    self.model.load_kv_cache_scales(
                        self.server_args.quantization_param_path
                    )
                    logger.info(
                        "Loaded KV cache scaling factors from %s",
                        self.server_args.quantization_param_path,
                    )
                else:
                    raise RuntimeError(
                        "Using FP8 KV cache and scaling factors provided but "
                        "model %s does not support loading scaling factors.",
                        self.model.__class__,
                    )
            else:
                logger.warning(
                    "Using FP8 KV cache but no scaling factors "
                    "provided. Defaulting to scaling factors of 1.0. "
                    "This may lead to less accurate results!"
                )

419
        # Parse other args
420
        self.sliding_window_size = (
421
422
            self.model.get_attention_sliding_window_size()
            if hasattr(self.model, "get_attention_sliding_window_size")
423
424
            else None
        )
425
        self.dtype = self.model_config.dtype
426

427
        after_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
428
        logger.info(
429
            f"Load weight end. "
430
            f"type={type(self.model).__name__}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
431
            f"dtype={self.dtype}, "
432
433
            f"avail mem={after_avail_memory:.2f} GB, "
            f"mem usage={(before_avail_memory - after_avail_memory):.2f} GB."
434
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
435

436
437
438
439
440
441
442
443
444
445
446
447
        # Handle the case where some ranks do not finish loading.
        try:
            dist.monitored_barrier(
                group=get_tp_group().cpu_group,
                timeout=datetime.timedelta(seconds=UNBALANCED_MODEL_LOADING_TIMEOUT_S),
                wait_all_ranks=True,
            )
        except RuntimeError:
            raise ValueError(
                f"TP rank {self.tp_rank} could finish the model loading, but there are other ranks that didn't finish loading. It is likely due to unexpected failures (e.g., OOM) or a slow node."
            ) from None

448
449
450
451
    def update_weights_from_disk(
        self, model_path: str, load_format: str
    ) -> tuple[bool, str]:
        """Update engine weights in-place from the disk."""
452
        logger.info(
Chayenne's avatar
Chayenne committed
453
            f"Update engine weights online from disk begin. "
Zhang, Liangang's avatar
Zhang, Liangang committed
454
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
455
456
        )

Zhang, Liangang's avatar
Zhang, Liangang committed
457
        target_device = torch.device(self.device)
458
        self.model_config.model_path = model_path
459
460
        load_config = LoadConfig(load_format=load_format)

Lianmin Zheng's avatar
Lianmin Zheng committed
461
        # Only support DefaultModelLoader for now
462
463
        loader = get_model_loader(load_config)
        if not isinstance(loader, DefaultModelLoader):
Lianmin Zheng's avatar
Lianmin Zheng committed
464
465
            message = f"Failed to get model loader: {loader}."
            return False, message
466
467
468

        def get_weight_iter(config):
            iter = loader._get_weights_iterator(
469
                DefaultModelLoader.Source(
470
                    config.model_path,
471
472
473
474
475
                    revision=config.revision,
                    fall_back_to_pt=getattr(
                        self.model, "fall_back_to_pt_during_load", True
                    ),
                )
476
477
478
479
480
481
482
483
484
485
486
487
            )
            return iter

        def model_load_weights(model, iter):
            model.load_weights(iter)
            for _, module in self.model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    with device_loading_context(module, target_device):
                        quant_method.process_weights_after_loading(module)
            return model

488
        with set_default_torch_dtype(self.model_config.dtype):
489
            try:
490
                iter = get_weight_iter(self.model_config)
491
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
492
                message = f"Failed to get weights iterator: {e}."
493
494
495
496
                return False, message
            try:
                model = model_load_weights(self.model, iter)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
497
498
499
                message = (
                    f"Failed to update weights: {e}.\nRolling back to original weights."
                )
500
501
                del iter
                gc.collect()
502
                iter = get_weight_iter(self.model_config)
503
504
505
506
507
508
509
510
                self.model = model_load_weights(self.model, iter)
                return False, message

        self.model = model
        self.server_args.model_path = model_path
        self.server_args.load_format = load_format
        self.load_config = load_config

511
        logger.info("Update weights end.")
Lianmin Zheng's avatar
Lianmin Zheng committed
512
        return True, "Succeeded to update model weights."
513

514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    def init_weights_update_group(
        self,
        master_address,
        master_port,
        rank_offset,
        world_size,
        group_name,
        backend="nccl",
    ):
        """Initialize the Torch process group for model parameter updates.

        `_model_update_group` is used in the RLHF workflow, where rank
        0 is the actor model in the training engine, and the other ranks are
        the inference engine, which is used for rollout.

        In the RLHF workflow, the training engine updates the model
        weights/parameters online, and broadcasts them to the inference
        engine through the `_model_update_group` process group.
        """
        assert (
            torch.distributed.is_initialized()
        ), "Default torch process group must be initialized"
        assert group_name != "", "Group name cannot be empty"

        rank = rank_offset + self.tp_rank

        logger.info(
            f"init custom process group: master_address={master_address}, master_port={master_port}, "
542
            f"rank_offset={rank_offset}, rank={rank}, world_size={world_size}, group_name={group_name}, backend={backend}"
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        )

        try:
            self._model_update_group = init_custom_process_group(
                backend=backend,
                init_method=f"tcp://{master_address}:{master_port}",
                world_size=world_size,
                rank=rank,
                group_name=group_name,
            )
            dist.barrier(group=self._model_update_group, device_ids=[rank])
            return True, "Succeeded to initialize custom process group."
        except Exception as e:
            message = f"Failed to initialize custom process group: {e}."
            logger.error(message)
            return False, message

    def update_weights_from_distributed(self, name, dtype, shape):
        """
        Update specific parameter in the model weights online
        through `_model_update_group` process group.

        Args:
            name: the name of the parameter to be updated.
            dtype: the data type of the parameter to be updated.
            shape: the shape of the parameter to be updated.
        """
        target_dtype = (
            dtype if isinstance(dtype, torch.dtype) else getattr(torch, dtype)
        )

        assert (
            self._model_update_group is not None
        ), "model update group must be initialized"

        try:
            weights = torch.empty(shape, dtype=target_dtype, device=self.device)
            torch.distributed.broadcast(weights, src=0, group=self._model_update_group)
            self.model.load_weights([(name, weights)])
            return True, f"Succeeded to update parameter {name} online."

        except Exception as e:
            error_msg = (
                f"Failed to update parameter online: {e}. "
                f"The full weights of the ModelRunner are partially updated. "
                f"Please discard the whole weights."
            )
            logger.error(error_msg)
            return False, error_msg

593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
    def update_weights_from_tensor(
        self,
        named_tensors: List[Tuple[str, Union[torch.Tensor, "LocalSerializedTensor"]]],
        load_format: Optional[str] = None,
    ):
        named_tensors = [
            (name, _unwrap_tensor(tensor, tp_rank=self.tp_rank))
            for name, tensor in named_tensors
        ]
        if load_format == "direct":
            _model_load_weights_direct(self.model, named_tensors)
        elif load_format is None:
            self.model.load_weights(named_tensors)
        else:
            raise NotImplementedError(f"Unknown load_format={load_format}")
608
        return True, "Success"
609

610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
    def get_weights_by_name(
        self, name: str, truncate_size: int = 100
    ) -> Optional[torch.Tensor]:
        """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.

        Only used for unit test with an unoptimized performance.
        For optimized performance, please use torch.save and torch.load.
        """
        # TODO: (chenyang) Add support for Qwen models.
        try:
            return self.model.get_weights_by_name(
                name, truncate_size, tp_size=self.tp_size
            )
        except Exception as e:
            logger.error(f"Error when getting parameter {name}: {e}")
            return None

627
628
629
630
631
632
633
634
    def init_lora_manager(self):
        self.lora_manager = LoRAManager(
            base_model=self.model,
            lora_paths=self.server_args.lora_paths,
            base_hf_config=self.model_config.hf_config,
            max_loras_per_batch=self.server_args.max_loras_per_batch,
            load_config=self.load_config,
            dtype=self.dtype,
635
            lora_backend=self.server_args.lora_backend,
636
637
            tp_size=self.tp_size,
            tp_rank=self.tp_rank,
638
639
640
        )
        logger.info("LoRA manager ready.")

641
    def profile_max_num_token(self, total_gpu_memory: int):
642
        available_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
643
            self.device, self.gpu_id, distributed=self.tp_size > 1
644
        )
645
646
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
647
            and not self.server_args.disable_mla
648
649
650
651
        ):
            cell_size = (
                (self.model_config.kv_lora_rank + self.model_config.qk_rope_head_dim)
                * self.model_config.num_hidden_layers
652
                * torch._utils._element_size(self.kv_cache_dtype)
653
654
655
            )
        else:
            cell_size = (
656
                self.model_config.get_num_kv_heads(get_attention_tp_size())
657
658
659
                * self.model_config.head_dim
                * self.model_config.num_hidden_layers
                * 2
660
                * torch._utils._element_size(self.kv_cache_dtype)
661
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
662
663
664
        rest_memory = available_gpu_memory - total_gpu_memory * (
            1 - self.mem_fraction_static
        )
665
        max_num_token = int(rest_memory * (1 << 30) // cell_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
666
667
        return max_num_token

668
    def init_memory_pool(
669
670
        self,
        total_gpu_memory: int,
671
672
        max_num_reqs: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
673
    ):
674
675
676
        if self.server_args.kv_cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        elif self.server_args.kv_cache_dtype == "fp8_e5m2":
677
            if is_hip():  # Using natively supported format
HAI's avatar
HAI committed
678
679
680
                self.kv_cache_dtype = torch.float8_e5m2fnuz
            else:
                self.kv_cache_dtype = torch.float8_e5m2
bjmsong's avatar
bjmsong committed
681
682
683
        elif self.server_args.kv_cache_dtype == "fp8_e4m3":
            if is_cuda():
                self.kv_cache_dtype = torch.float8_e4m3fn
684
685
686
687
688
        else:
            raise ValueError(
                f"Unsupported kv_cache_dtype: {self.server_args.kv_cache_dtype}."
            )

689
        self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
690
691
692
693
694
695
696
697
698
699
700
701

        if max_num_reqs is None:
            max_num_reqs = min(
                max(
                    int(
                        self.max_total_num_tokens / self.model_config.context_len * 512
                    ),
                    2048,
                ),
                4096,
            )

702
703
704
        if SGLANG_CI_SMALL_KV_SIZE:
            self.max_total_num_tokens = int(SGLANG_CI_SMALL_KV_SIZE)

705
706
707
        if not self.spec_algorithm.is_none():
            if self.is_draft_worker:
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
708
                max_num_reqs = self.server_args.max_num_reqs
709
            else:
710
711
                # We are sharing the `token_to_kv_pool`, and both verify and draft tokens
                # can be concurrently allocated, so we should give a headroom for it.
712
713
                self.server_args.draft_runner_cache_size = (
                    self.max_total_num_tokens
714
715
716
717
718
719
720
                    # draft
                    + max_num_reqs
                    * self.server_args.speculative_num_steps
                    * self.server_args.speculative_eagle_topk
                    # verify
                    + max_num_reqs * self.server_args.speculative_num_draft_tokens
                    # buffer
721
722
                    + 100
                )
723
724
725
726
                # Target worker and draft worker shares the same indices for the
                # token_to_kv_pool, so we should make sure to match max_total_num_tokens.
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
                self.server_args.max_num_reqs = max_num_reqs
727

728
729
        if max_total_tokens is not None:
            if max_total_tokens > self.max_total_num_tokens:
730
                logging.warning(
731
732
733
734
735
                    f"max_total_tokens={max_total_tokens} is larger than the profiled value "
                    f"{self.max_total_num_tokens}. "
                    f"Use the profiled value instead."
                )
            self.max_total_num_tokens = min(self.max_total_num_tokens, max_total_tokens)
736

737
738
739
740
741
742
        self.max_total_num_tokens = (
            self.max_total_num_tokens
            // self.server_args.page_size
            * self.server_args.page_size
        )

743
        if self.max_total_num_tokens <= 0:
744
            raise RuntimeError(
745
                "Not enough memory. Please try to increase --mem-fraction-static."
746
            )
747

748
749
750
751
752
753
754
755
756
757
758
        if self.req_to_token_pool is None:
            self.req_to_token_pool = ReqToTokenPool(
                size=max_num_reqs + 1,
                max_context_len=self.model_config.context_len + 4,
                device=self.device,
                enable_memory_saver=self.server_args.enable_memory_saver,
            )
        else:
            # Draft worker shares req_to_token_pool with the target worker.
            assert self.is_draft_worker

759
760
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
761
            and not self.server_args.disable_mla
762
763
764
        ):
            self.token_to_kv_pool = MLATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
765
                page_size=self.page_size,
766
                dtype=self.kv_cache_dtype,
767
768
769
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
770
                device=self.device,
771
                enable_memory_saver=self.server_args.enable_memory_saver,
772
            )
Shuo Yang's avatar
Shuo Yang committed
773
774
775
        elif self.server_args.enable_double_sparsity:
            self.token_to_kv_pool = DoubleSparseTokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
776
                page_size=self.page_size,
Shuo Yang's avatar
Shuo Yang committed
777
                dtype=self.kv_cache_dtype,
778
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
Shuo Yang's avatar
Shuo Yang committed
779
780
781
782
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
                device=self.device,
                heavy_channel_num=self.server_args.ds_heavy_channel_num,
783
                enable_memory_saver=self.server_args.enable_memory_saver,
Shuo Yang's avatar
Shuo Yang committed
784
            )
785
786
787
        else:
            self.token_to_kv_pool = MHATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
788
                page_size=self.page_size,
789
                dtype=self.kv_cache_dtype,
790
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
791
792
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
793
                device=self.device,
794
                enable_memory_saver=self.server_args.enable_memory_saver,
795
            )
796
797

        if self.token_to_kv_pool_allocator is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
            if self.page_size == 1:
                self.token_to_kv_pool_allocator = TokenToKVPoolAllocator(
                    self.max_total_num_tokens,
                    dtype=self.kv_cache_dtype,
                    device=self.device,
                    kvcache=self.token_to_kv_pool,
                )
            else:
                self.token_to_kv_pool_allocator = PagedTokenToKVPoolAllocator(
                    self.max_total_num_tokens,
                    page_size=self.page_size,
                    dtype=self.kv_cache_dtype,
                    device=self.device,
                    kvcache=self.token_to_kv_pool,
                )
813
814
815
        else:
            assert self.is_draft_worker

816
        logger.info(
817
            f"Memory pool end. "
Zhang, Liangang's avatar
Zhang, Liangang committed
818
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
819
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
820

Lianmin Zheng's avatar
Lianmin Zheng committed
821
822
823
824
825
826
827
828
829
    def init_cublas(self):
        """We need to run a small matmul to init cublas. Otherwise, it will raise some errors later."""
        dtype = torch.float16
        device = "cuda"
        a = torch.ones((16, 16), dtype=dtype, device=device)
        b = torch.ones((16, 16), dtype=dtype, device=device)
        c = a @ b
        return c

830
831
    def init_attention_backend(self):
        """Init attention kernel backend."""
832
        if self.server_args.attention_backend == "flashinfer":
833
834
835
836
            from sglang.srt.layers.attention.flashinfer_backend import (
                FlashInferAttnBackend,
            )

837
838
839
840
841
842
843
844
845
846
847
848
849
850
            # Init streams
            if self.server_args.speculative_algorithm == "EAGLE":
                self.plan_stream_for_flashinfer = torch.cuda.Stream()
            self.attn_backend = FlashInferAttnBackend(self)
        elif self.server_args.attention_backend == "triton":
            assert self.sliding_window_size is None, (
                "Window attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
            assert not self.model_config.is_encoder_decoder, (
                "Cross attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
            if self.server_args.enable_double_sparsity:
851
852
853
854
                from sglang.srt.layers.attention.double_sparsity_backend import (
                    DoubleSparseAttnBackend,
                )

855
                self.attn_backend = DoubleSparseAttnBackend(self)
856
            else:
857
858
                from sglang.srt.layers.attention.triton_backend import TritonAttnBackend

859
860
                self.attn_backend = TritonAttnBackend(self)
        elif self.server_args.attention_backend == "torch_native":
861
862
863
864
            from sglang.srt.layers.attention.torch_native_backend import (
                TorchNativeAttnBackend,
            )

865
866
            self.attn_backend = TorchNativeAttnBackend(self)
        elif self.server_args.attention_backend == "flashinfer_mla":
867
868
869
870
            from sglang.srt.layers.attention.flashinfer_mla_backend import (
                FlashInferMLAAttnBackend,
            )

871
            self.attn_backend = FlashInferMLAAttnBackend(self)
lukec's avatar
lukec committed
872
873
874
875
        elif self.server_args.attention_backend == "flashmla":
            from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend

            self.attn_backend = FlashMLABackend(self)
876
877
878
879
880
881
882
883
884
885
886
887
888
        elif self.server_args.attention_backend == "fa3":
            assert torch.cuda.get_device_capability()[0] >= 9, (
                "FlashAttention v3 Backend requires SM>=90. "
                "Please use `--attention-backend flashinfer`."
            )
            logger.warning(
                "FlashAttention v3 Backend is in Beta. Multimodal, Page > 1, FP8, MLA and Speculative Decoding are not supported."
            )
            from sglang.srt.layers.attention.flashattention_backend import (
                FlashAttentionBackend,
            )

            self.attn_backend = FlashAttentionBackend(self)
889
890
891
892
        else:
            raise ValueError(
                f"Invalid attention backend: {self.server_args.attention_backend}"
            )
893

Shuo Yang's avatar
Shuo Yang committed
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
    def init_double_sparsity_channel_config(self, selected_channel):
        selected_channel = "." + selected_channel + "_proj"
        self.sorted_channels = []
        # load channel config
        with open(self.server_args.ds_channel_config_path, "r") as f:
            channel_config = json.load(f)

        for i in range(self.model_config.num_hidden_layers):
            key = "model.layers." + str(i) + ".self_attn" + selected_channel
            self.sorted_channels.append(
                torch.tensor(channel_config[key])[
                    :, : self.server_args.ds_heavy_channel_num
                ]
                .contiguous()
                .cuda()
            )

911
    def init_cuda_graphs(self):
912
        """Capture cuda graphs."""
913
914
        self.cuda_graph_runner = None

915
916
917
918
        if not self.is_generation:
            # TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
            return

919
920
        if self.server_args.disable_cuda_graph:
            return
921

922
        tic = time.time()
923
        before_mem = get_available_gpu_memory(self.device, self.gpu_id)
924
        logger.info(
925
            f"Capture cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
926
        )
927
        self.cuda_graph_runner = CudaGraphRunner(self)
928
        after_mem = get_available_gpu_memory(self.device, self.gpu_id)
929
        logger.info(
930
931
            f"Capture cuda graph end. Time elapsed: {time.time() - tic:.2f} s. "
            f"avail mem={after_mem:.2f} GB. mem usage={(before_mem - after_mem):.2f} GB."
932
        )
933

934
935
936
937
938
939
940
    def apply_torch_tp(self):
        logger.info(f"Enabling torch tensor parallelism on {self.tp_size} devices.")
        from sglang.srt.model_parallel import tensor_parallel

        device_mesh = torch.distributed.init_device_mesh(self.device, (self.tp_size,))
        tensor_parallel(self.model, device_mesh)

941
    def forward_decode(self, forward_batch: ForwardBatch):
942
        self.attn_backend.init_forward_metadata(forward_batch)
943
        return self.model.forward(
944
            forward_batch.input_ids, forward_batch.positions, forward_batch
Lianmin Zheng's avatar
Lianmin Zheng committed
945
946
        )

947
948
949
950
951
952
    def forward_extend(
        self, forward_batch: ForwardBatch, skip_attn_backend_init: bool = False
    ):
        if not skip_attn_backend_init:
            self.attn_backend.init_forward_metadata(forward_batch)

953
        if self.is_generation:
Rin Intachuen's avatar
Rin Intachuen committed
954
955
956
957
958
959
960
961
962
963
964
            if forward_batch.input_embeds is None:
                return self.model.forward(
                    forward_batch.input_ids, forward_batch.positions, forward_batch
                )
            else:
                return self.model.forward(
                    forward_batch.input_ids,
                    forward_batch.positions,
                    forward_batch,
                    input_embeds=forward_batch.input_embeds.bfloat16(),
                )
965
966
967
        else:
            # Only embedding models have get_embedding parameter
            return self.model.forward(
968
969
970
                forward_batch.input_ids,
                forward_batch.positions,
                forward_batch,
971
972
                get_embedding=True,
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
973

Ke Bao's avatar
Ke Bao committed
974
975
976
977
978
    def forward_idle(self, forward_batch: ForwardBatch):
        return self.model.forward(
            forward_batch.input_ids, forward_batch.positions, forward_batch
        )

979
980
981
    def forward(
        self, forward_batch: ForwardBatch, skip_attn_backend_init: bool = False
    ) -> LogitsProcessorOutput:
982
983
984
985
986
        if (
            forward_batch.forward_mode.is_cuda_graph()
            and self.cuda_graph_runner
            and self.cuda_graph_runner.can_run(forward_batch)
        ):
987
988
989
            return self.cuda_graph_runner.replay(
                forward_batch, skip_attn_backend_init=skip_attn_backend_init
            )
990

991
992
993
        if forward_batch.forward_mode.is_decode():
            return self.forward_decode(forward_batch)
        elif forward_batch.forward_mode.is_extend():
994
995
996
            return self.forward_extend(
                forward_batch, skip_attn_backend_init=skip_attn_backend_init
            )
Ke Bao's avatar
Ke Bao committed
997
998
        elif forward_batch.forward_mode.is_idle():
            return self.forward_idle(forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
999
        else:
1000
            raise ValueError(f"Invalid forward mode: {forward_batch.forward_mode}")
1001

1002
1003
1004
    def _preprocess_logits(
        self, logits_output: LogitsProcessorOutput, sampling_info: SamplingBatchInfo
    ):
1005
        # Apply logit bias
1006
1007
1008
1009
1010
1011
1012
1013
        if sampling_info.sampling_info_done:
            # Overlap mode: the function update_regex_vocab_mask was executed
            # in process_batch_result of the last batch.
            if sampling_info.grammars:
                sampling_info.sampling_info_done.wait()
        else:
            # Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
            sampling_info.update_regex_vocab_mask()
1014
1015
        sampling_info.apply_logits_bias(logits_output.next_token_logits)

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    def sample(
        self,
        logits_output: LogitsProcessorOutput,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        """Sample and compute logprobs and update logits_output.

        Args:
            logits_output: The logits output from the model forward
            forward_batch: The forward batch that generates logits_output

        Returns:
            A list of next_token_ids
        """
        # For duplex models with multiple output streams.
        if isinstance(logits_output, tuple):
            return torch.stack(
                [self.sample(values, forward_batch) for values in logits_output],
                axis=-1,
            )

        self._preprocess_logits(logits_output, forward_batch.sampling_info)

1039
1040
1041
        # Sample the next tokens
        next_token_ids = self.sampler(
            logits_output,
1042
            forward_batch.sampling_info,
1043
1044
            forward_batch.return_logprob,
            forward_batch.top_logprobs_nums,
1045
            forward_batch.token_ids_logprobs,
1046
        )
1047
1048
        return next_token_ids

Yineng Zhang's avatar
Yineng Zhang committed
1049
1050
1051
1052
1053
1054
1055
1056
    @property
    def model_is_mrope(self) -> bool:
        """Detect if the model has "mrope" rope_scaling type.
        mrope requires keep "rope_deltas" between prompt and decoding phases."""
        rope_scaling = getattr(self.model_config.hf_config, "rope_scaling", {})
        if rope_scaling is None:
            return False
        return rope_scaling.get("type", None) == "mrope"
1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
    def save_remote_model(self, url: str):
        from sglang.srt.model_loader.loader import RemoteModelLoader

        logger.info(f"Saving model to {url}")
        RemoteModelLoader.save_model(self.model, self.model_config.model_path, url)

    def save_sharded_model(
        self, path: str, pattern: Optional[str] = None, max_size: Optional[int] = None
    ):
        from sglang.srt.model_loader.loader import ShardedStateLoader

        logger.info(
            f"Save sharded model to {path} with pattern {pattern} and max_size {max_size}"
        )
        ShardedStateLoader.save_model(self.model, path, pattern, max_size)

1074
1075
1076
1077
1078
1079
1080
1081
1082

def _model_load_weights_direct(model, named_tensors: List[Tuple[str, torch.Tensor]]):
    params_dict = dict(model.named_parameters())
    for name, tensor in named_tensors:
        default_weight_loader(params_dict[name], tensor)


def _unwrap_tensor(tensor, tp_rank):
    if isinstance(tensor, LocalSerializedTensor):
1083
1084
1085
        monkey_patch_torch_reductions()
        tensor = tensor.get(tp_rank)
    return tensor.to(torch.cuda.current_device())
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096


@dataclass
class LocalSerializedTensor:
    """torch.Tensor that gets serialized by MultiprocessingSerializer (which only serializes a pointer and not the data).
    The i-th element in the list corresponds to i-th rank's GPU."""

    values: List[bytes]

    def get(self, rank: int):
        return MultiprocessingSerializer.deserialize(self.values[rank])