"vscode:/vscode.git/clone" did not exist on "81434df30db40518c4d6573ec8fcc2f21680a65f"
grouped_gemm_fp16.cpp 7.95 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

zjing14's avatar
zjing14 committed
4
5
6
7
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
8

Chao Liu's avatar
Chao Liu committed
9
10
11
12
13
14
15
16
17
18
19
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
zjing14's avatar
zjing14 committed
20
21
22
23
24
25
26
27
28
29
30

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using DeviceGroupedGemmPtr_ = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
31
namespace instance {
zjing14's avatar
zjing14 committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGroupedGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace {

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
{
zjing14's avatar
zjing14 committed
52
    int group_count = rand() % 10 + 1;
zjing14's avatar
zjing14 committed
53
54
55
56
57
58
59
60
61
62

    // GEMM shape
    std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;
    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    gemm_shapes.reserve(group_count);

    for(int i = 0; i < group_count; i++)
    {
zjing14's avatar
zjing14 committed
63
64
65
        int M = 256 + 256 * (rand() % 10);
        int N = 256 + 256 * (rand() % 10);
        int K = 128 + 128 * (rand() % 10);
zjing14's avatar
zjing14 committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

        int AStride = std::is_same<ck::tensor_layout::gemm::RowMajor, ALayout>::value ? K : M;
        int BStride = std::is_same<ck::tensor_layout::gemm::RowMajor, BLayout>::value ? N : K;
        int CStride = std::is_same<ck::tensor_layout::gemm::RowMajor, CLayout>::value ? N : M;

        gemm_shapes.push_back({M, N, K, AStride, BStride, CStride});
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    std::vector<Tensor<ADataType>> a_tensors;
    ;
    std::vector<Tensor<BDataType>> b_tensors;
    std::vector<Tensor<CDataType>> c_host_tensors;
    std::vector<Tensor<CDataType>> c_device_tensors;

    a_tensors.reserve(group_count);
    b_tensors.reserve(group_count);
    c_host_tensors.reserve(group_count);
    c_device_tensors.reserve(group_count);

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;

    std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;

    a_tensors_device.reserve(group_count);
    b_tensors_device.reserve(group_count);
    c_tensors_device.reserve(group_count);

107
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
108
109
110
111
112
113
114
115
116
117
    {
        a_tensors.emplace_back(Tensor<ADataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{})));
        b_tensors.emplace_back(Tensor<BDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].K, gemm_shapes[i].N, gemm_shapes[i].StrideB, BLayout{})));
        c_host_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));
        c_device_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));

zjing14's avatar
zjing14 committed
118
119
        a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
zjing14's avatar
zjing14 committed
120
121
    }

122
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    {
        a_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize()));
        b_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize()));
        c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
            sizeof(CDataType) * c_device_tensors[i].mDesc.GetElementSize()));

        a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
        b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());

        p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
        p_b.push_back(b_tensors_device[i]->GetDeviceBuffer());
        p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
    }

    auto a_element_op = PassThrough{};
    auto b_element_op = PassThrough{};
    auto c_element_op = PassThrough{};

    // do GEMM
144
145
    auto invoker_ptr = groupedGemmPtr->MakeInvokerPointer();

zjing14's avatar
zjing14 committed
146
147
148
    auto argument_ptr = groupedGemmPtr->MakeArgumentPointer(
        p_a, p_b, p_c, gemm_shapes, a_element_op, b_element_op, c_element_op);

149
150
151
152
    DeviceMem gemm_desc_workspace(groupedGemmPtr->GetWorkSpaceSize(argument_ptr.get()));

    groupedGemmPtr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());

zjing14's avatar
zjing14 committed
153
154
    invoker_ptr->Run(argument_ptr.get());

155
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
156
157
158
    {
        c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data());

159
160
161
162
163
164
165
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                AccDataType,
                                                                                PassThrough,
                                                                                PassThrough,
                                                                                PassThrough>;
zjing14's avatar
zjing14 committed
166
167
168
169
170
171
172
173
174
175
176

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
                                                  b_tensors[i],
                                                  c_host_tensors[i],
                                                  a_element_op,
                                                  b_element_op,
                                                  c_element_op);

zjing14's avatar
zjing14 committed
177
178
179
180
181
        if(!groupedGemmPtr->IsSupportedArgument(argument_ptr.get()))
        {
            return false;
        }

zjing14's avatar
zjing14 committed
182
183
        ref_invoker.Run(ref_argument);

184
        bool res = ck::utils::check_err(c_host_tensors[i].mData, c_device_tensors[i].mData);
zjing14's avatar
zjing14 committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

        std::cout << "group_id: " << i << (res ? " SUCCESS" : " FAILURE") << std::endl;

        if(!res)
            return false;
    }

    return true;
}

} // anonymous namespace

int main()
{
    std::vector<DeviceGroupedGemmPtr_> groupedGemmPtrs;
200
    ck::tensor_operation::device::instance::
zjing14's avatar
zjing14 committed
201
202
203
204
205
206
207
208
209
210
        add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(groupedGemmPtrs);

    bool res = true;

    for(auto& gemmPtr : groupedGemmPtrs)
    {
        res &= TestGroupedGemm(gemmPtr);
    }

    std::cout << "TestGroupedGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
zjing14's avatar
zjing14 committed
211
212

    return res ? 0 : 1;
zjing14's avatar
zjing14 committed
213
}