grouped_gemm_fp16.cpp 7.26 KB
Newer Older
zjing14's avatar
zjing14 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_grouped_gemm_xdl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "test_util.hpp"

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using DeviceGroupedGemmPtr_ = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGroupedGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace {

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

template <typename T>
static bool check_err(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-2;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            std::cout << double(ref.mData[i]) << "," << double(result.mData[i]) << std::endl;
            return false;
        }
    }

    return true;
}

bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
{
    int group_count = 4;

    // GEMM shape
    std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;
    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    gemm_shapes.reserve(group_count);

    for(int i = 0; i < group_count; i++)
    {
        int M = 256 + 256 * i;
        int N = 128 + 128 * i;
        int K = 128 + 64 * i;

        int AStride = std::is_same<ck::tensor_layout::gemm::RowMajor, ALayout>::value ? K : M;
        int BStride = std::is_same<ck::tensor_layout::gemm::RowMajor, BLayout>::value ? N : K;
        int CStride = std::is_same<ck::tensor_layout::gemm::RowMajor, CLayout>::value ? N : M;

        gemm_shapes.push_back({M, N, K, AStride, BStride, CStride});
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    std::vector<Tensor<ADataType>> a_tensors;
    ;
    std::vector<Tensor<BDataType>> b_tensors;
    std::vector<Tensor<CDataType>> c_host_tensors;
    std::vector<Tensor<CDataType>> c_device_tensors;

    a_tensors.reserve(group_count);
    b_tensors.reserve(group_count);
    c_host_tensors.reserve(group_count);
    c_device_tensors.reserve(group_count);

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;

    std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;

    a_tensors_device.reserve(group_count);
    b_tensors_device.reserve(group_count);
    c_tensors_device.reserve(group_count);

    for(int i = 0; i < gemm_shapes.size(); i++)
    {
        a_tensors.emplace_back(Tensor<ADataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{})));
        b_tensors.emplace_back(Tensor<BDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].K, gemm_shapes[i].N, gemm_shapes[i].StrideB, BLayout{})));
        c_host_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));
        c_device_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));

        a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
        b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
    }

    for(int i = 0; i < gemm_shapes.size(); i++)
    {
        a_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize()));
        b_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize()));
        c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
            sizeof(CDataType) * c_device_tensors[i].mDesc.GetElementSize()));

        a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
        b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());

        p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
        p_b.push_back(b_tensors_device[i]->GetDeviceBuffer());
        p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
    }

    auto a_element_op = PassThrough{};
    auto b_element_op = PassThrough{};
    auto c_element_op = PassThrough{};

    // do GEMM
    auto invoker_ptr  = groupedGemmPtr->MakeInvokerPointer();
    auto argument_ptr = groupedGemmPtr->MakeArgumentPointer(
        p_a, p_b, p_c, gemm_shapes, a_element_op, b_element_op, c_element_op);

    invoker_ptr->Run(argument_ptr.get());

    for(int i = 0; i < gemm_shapes.size(); i++)
    {
        c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data());

        using ReferenceGemmInstance = ck::tensor_operation::host::
            ReferenceGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
                                                  b_tensors[i],
                                                  c_host_tensors[i],
                                                  a_element_op,
                                                  b_element_op,
                                                  c_element_op);

        ref_invoker.Run(ref_argument);

        bool res = check_err(c_device_tensors[i], c_host_tensors[i]);

        std::cout << "group_id: " << i << (res ? " SUCCESS" : " FAILURE") << std::endl;

        if(!res)
            return false;
    }

    return true;
}

} // anonymous namespace

int main()
{
    std::vector<DeviceGroupedGemmPtr_> groupedGemmPtrs;
    ck::tensor_operation::device::device_grouped_gemm_instance::
        add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(groupedGemmPtrs);

    bool res = true;

    for(auto& gemmPtr : groupedGemmPtrs)
    {
        res &= TestGroupedGemm(gemmPtr);
    }

    std::cout << "TestGroupedGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
}