grouped_gemm_fp16.cpp 7.88 KB
Newer Older
zjing14's avatar
zjing14 committed
1
2
3
4
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
5

Chao Liu's avatar
Chao Liu committed
6
7
8
9
10
11
12
13
14
15
16
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
zjing14's avatar
zjing14 committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

using PassThrough = ck::tensor_operation::element_wise::PassThrough;

using DeviceGroupedGemmPtr_ = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
    std::vector<DeviceGroupedGemmPtr_>&);
}
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace {

using ADataType   = ck::half_t;
using BDataType   = ck::half_t;
using CDataType   = ck::half_t;
using AccDataType = float;

using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;

bool TestGroupedGemm(DeviceGroupedGemmPtr_& groupedGemmPtr)
{
zjing14's avatar
zjing14 committed
49
    int group_count = rand() % 10 + 1;
zjing14's avatar
zjing14 committed
50
51
52
53
54
55
56
57
58
59

    // GEMM shape
    std::vector<ck::tensor_operation::device::GemmShape> gemm_shapes;
    std::vector<const void*> p_a, p_b;
    std::vector<void*> p_c;

    gemm_shapes.reserve(group_count);

    for(int i = 0; i < group_count; i++)
    {
zjing14's avatar
zjing14 committed
60
61
62
        int M = 256 + 256 * (rand() % 10);
        int N = 256 + 256 * (rand() % 10);
        int K = 128 + 128 * (rand() % 10);
zjing14's avatar
zjing14 committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        int AStride = std::is_same<ck::tensor_layout::gemm::RowMajor, ALayout>::value ? K : M;
        int BStride = std::is_same<ck::tensor_layout::gemm::RowMajor, BLayout>::value ? N : K;
        int CStride = std::is_same<ck::tensor_layout::gemm::RowMajor, CLayout>::value ? N : M;

        gemm_shapes.push_back({M, N, K, AStride, BStride, CStride});
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    std::vector<Tensor<ADataType>> a_tensors;
    ;
    std::vector<Tensor<BDataType>> b_tensors;
    std::vector<Tensor<CDataType>> c_host_tensors;
    std::vector<Tensor<CDataType>> c_device_tensors;

    a_tensors.reserve(group_count);
    b_tensors.reserve(group_count);
    c_host_tensors.reserve(group_count);
    c_device_tensors.reserve(group_count);

    using DeviceMemPtr = std::unique_ptr<DeviceMem>;

    std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;

    a_tensors_device.reserve(group_count);
    b_tensors_device.reserve(group_count);
    c_tensors_device.reserve(group_count);

104
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
105
106
107
108
109
110
111
112
113
114
    {
        a_tensors.emplace_back(Tensor<ADataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].K, gemm_shapes[i].StrideA, ALayout{})));
        b_tensors.emplace_back(Tensor<BDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].K, gemm_shapes[i].N, gemm_shapes[i].StrideB, BLayout{})));
        c_host_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));
        c_device_tensors.emplace_back(Tensor<CDataType>(f_host_tensor_descriptor(
            gemm_shapes[i].M, gemm_shapes[i].N, gemm_shapes[i].StrideC, CLayout{})));

zjing14's avatar
zjing14 committed
115
116
        a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
        b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
zjing14's avatar
zjing14 committed
117
118
    }

119
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    {
        a_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize()));
        b_tensors_device.emplace_back(
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize()));
        c_tensors_device.emplace_back(std::make_unique<DeviceMem>(
            sizeof(CDataType) * c_device_tensors[i].mDesc.GetElementSize()));

        a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
        b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());

        p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
        p_b.push_back(b_tensors_device[i]->GetDeviceBuffer());
        p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
    }

    auto a_element_op = PassThrough{};
    auto b_element_op = PassThrough{};
    auto c_element_op = PassThrough{};

    // do GEMM
141
142
    auto invoker_ptr = groupedGemmPtr->MakeInvokerPointer();

zjing14's avatar
zjing14 committed
143
144
145
    auto argument_ptr = groupedGemmPtr->MakeArgumentPointer(
        p_a, p_b, p_c, gemm_shapes, a_element_op, b_element_op, c_element_op);

146
147
148
149
    DeviceMem gemm_desc_workspace(groupedGemmPtr->GetWorkSpaceSize(argument_ptr.get()));

    groupedGemmPtr->SetWorkSpacePointer(argument_ptr.get(), gemm_desc_workspace.GetDeviceBuffer());

zjing14's avatar
zjing14 committed
150
151
    invoker_ptr->Run(argument_ptr.get());

152
    for(std::size_t i = 0; i < gemm_shapes.size(); i++)
zjing14's avatar
zjing14 committed
153
154
155
    {
        c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data());

156
157
158
159
160
161
162
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                AccDataType,
                                                                                PassThrough,
                                                                                PassThrough,
                                                                                PassThrough>;
zjing14's avatar
zjing14 committed
163
164
165
166
167
168
169
170
171
172
173

        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
                                                  b_tensors[i],
                                                  c_host_tensors[i],
                                                  a_element_op,
                                                  b_element_op,
                                                  c_element_op);

zjing14's avatar
zjing14 committed
174
175
176
177
178
        if(!groupedGemmPtr->IsSupportedArgument(argument_ptr.get()))
        {
            return false;
        }

zjing14's avatar
zjing14 committed
179
180
        ref_invoker.Run(ref_argument);

181
        bool res = ck::utils::check_err(c_host_tensors[i].mData, c_device_tensors[i].mData);
zjing14's avatar
zjing14 committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        std::cout << "group_id: " << i << (res ? " SUCCESS" : " FAILURE") << std::endl;

        if(!res)
            return false;
    }

    return true;
}

} // anonymous namespace

int main()
{
    std::vector<DeviceGroupedGemmPtr_> groupedGemmPtrs;
    ck::tensor_operation::device::device_grouped_gemm_instance::
        add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(groupedGemmPtrs);

    bool res = true;

    for(auto& gemmPtr : groupedGemmPtrs)
    {
        res &= TestGroupedGemm(gemmPtr);
    }

    std::cout << "TestGroupedGemm ..... " << (res ? "SUCCESS" : "FAILURE") << std::endl;
zjing14's avatar
zjing14 committed
208
209

    return res ? 0 : 1;
zjing14's avatar
zjing14 committed
210
}