conv.cu 19.3 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
#include "ConstantTensorDescriptor.cuh"
Chao Liu's avatar
Chao Liu committed
8
#include "conv_common.cuh"
Chao Liu's avatar
rename  
Chao Liu committed
9
10
#include "device_direct_convolution_1.cuh"
#include "device_direct_convolution_2.cuh"
Chao Liu's avatar
Chao Liu committed
11
#include "device_implicit_gemm_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
12
//#include "device_winograd_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
13

Chao Liu's avatar
Chao Liu committed
14
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
15
16
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
17
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
18
    {
Chao Liu's avatar
Chao Liu committed
19
        return 1;
Chao Liu's avatar
Chao Liu committed
20
21
22
    }
};

Chao Liu's avatar
Chao Liu committed
23
24
25
26
27
28
29
30
31
32
33
34
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
#if 0
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
#elif 1
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
54
55
56
57
58
59
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
60
61
62
63
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
78
79
80
81
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
82
83
84
85
86
87
88
89
90
91
92
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
Chao Liu's avatar
Chao Liu committed
93
void host_direct_convolution(const Tensor<T>& in_nchw, const Tensor<T>& wei_kcsr, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
94
95
96
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
97
        for(int c = 0; c < wei_kcsr.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
98
        {
Chao Liu's avatar
Chao Liu committed
99
            for(int y = 0; y < wei_kcsr.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
100
101
            {
                int hi = ho + y;
Chao Liu's avatar
Chao Liu committed
102
                for(int x = 0; x < wei_kcsr.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
103
104
                {
                    int wi = wo + x;
Chao Liu's avatar
Chao Liu committed
105
                    v += in_nchw(n, c, hi, wi) * wei_kcsr(k, c, y, x);
Chao Liu's avatar
Chao Liu committed
106
107
108
109
110
111
112
113
114
115
116
117
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
118
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
119
120
}

Chao Liu's avatar
Chao Liu committed
121
template <class T>
Chao Liu's avatar
Chao Liu committed
122
123
124
void host_winograd_3x3_convolution(const Tensor<T>& in_nchw,
                                   const Tensor<T>& wei_kcsr,
                                   Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
125
{
Chao Liu's avatar
Chao Liu committed
126
127
128
    constexpr std::size_t OutTileSizeH = 2;
    constexpr std::size_t OutTileSizeW = 2;

Chao Liu's avatar
Chao Liu committed
129
130
131
132
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
133

Chao Liu's avatar
Chao Liu committed
134
135
136
    std::size_t K = wei_kcsr.mDesc.GetLengths()[0];
    std::size_t S = wei_kcsr.mDesc.GetLengths()[2];
    std::size_t R = wei_kcsr.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
137
138
139
140
141
142
143
144
145

    std::size_t HO = out.mDesc.GetLengths()[2];
    std::size_t WO = out.mDesc.GetLengths()[3];

    std::size_t InTileSizeH = OutTileSizeH + S - 1;
    std::size_t InTileSizeW = OutTileSizeW + R - 1;

    std::size_t Y = (HO + OutTileSizeH - 1) / OutTileSizeH;
    std::size_t X = (WO + OutTileSizeW - 1) / OutTileSizeW;
Chao Liu's avatar
Chao Liu committed
146

Chao Liu's avatar
Chao Liu committed
147
148
149
150
151
152
153
154
155
156
157
158
159
    Tensor<T> in_hold({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> in_transform({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> wei_transform({K, C, InTileSizeH, InTileSizeW});
    Tensor<T> out_transform({N, K, Y, X, InTileSizeH, InTileSizeH});
    Tensor<T> out_hold({N, K, Y, X, OutTileSizeH, OutTileSizeW});

    auto f_in_hold = [&](auto n, auto c, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            std::size_t hi = OutTileSizeH * y + j;
            for(int i = 0; i < InTileSizeW; ++i)
            {
                std::size_t wi            = OutTileSizeW * x + i;
Chao Liu's avatar
Chao Liu committed
160
                in_hold(n, c, y, x, j, i) = in_nchw(n, c, hi, wi);
Chao Liu's avatar
Chao Liu committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto y, auto x) {
        in_transform(n, c, y, x, 0, 0) = in_hold(n, c, y, x, 0, 0) - in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 0) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 1) = in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 2) = -in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 3) = in_hold(n, c, y, x, 0, 1) - in_hold(n, c, y, x, 0, 3) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 1, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 2, 0) = -in_hold(n, c, y, x, 1, 0) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 1) = -in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 2) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 3) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 3, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 0) + in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) -
                                         in_hold(n, c, y, x, 3, 1) + in_hold(n, c, y, x, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
Chao Liu's avatar
Chao Liu committed
204
        wei_transform(k, c, 0, 0) = wei_kcsr(k, c, 0, 0);
Chao Liu's avatar
Chao Liu committed
205
        wei_transform(k, c, 0, 1) =
Chao Liu's avatar
Chao Liu committed
206
            0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2);
Chao Liu's avatar
Chao Liu committed
207
        wei_transform(k, c, 0, 2) =
Chao Liu's avatar
Chao Liu committed
208
209
            0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2);
        wei_transform(k, c, 0, 3) = wei_kcsr(k, c, 0, 2);
Chao Liu's avatar
Chao Liu committed
210
211

        wei_transform(k, c, 1, 0) =
Chao Liu's avatar
Chao Liu committed
212
213
214
215
216
217
218
219
220
221
222
            0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0);
        wei_transform(k, c, 1, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) +
                                    0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 1, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) -
                                    0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
223
        wei_transform(k, c, 1, 3) =
Chao Liu's avatar
Chao Liu committed
224
            0.5 * wei_kcsr(k, c, 0, 2) + 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
225
226

        wei_transform(k, c, 2, 0) =
Chao Liu's avatar
Chao Liu committed
227
228
229
230
231
232
233
234
235
236
237
            0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0);
        wei_transform(k, c, 2, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) -
                                    0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 2, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) +
                                    0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
238
        wei_transform(k, c, 2, 3) =
Chao Liu's avatar
Chao Liu committed
239
            0.5 * wei_kcsr(k, c, 0, 2) - 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
240

Chao Liu's avatar
Chao Liu committed
241
        wei_transform(k, c, 3, 0) = wei_kcsr(k, c, 2, 0);
Chao Liu's avatar
Chao Liu committed
242
        wei_transform(k, c, 3, 1) =
Chao Liu's avatar
Chao Liu committed
243
            0.5 * wei_kcsr(k, c, 2, 0) + 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
244
        wei_transform(k, c, 3, 2) =
Chao Liu's avatar
Chao Liu committed
245
246
            0.5 * wei_kcsr(k, c, 2, 0) - 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 3, 3) = wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
    };

    auto f_out_transform = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            for(int i = 0; i < InTileSizeW; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, y, x, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, y, x, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto y, auto x) {
        out_hold(n, k, y, x, 0, 0) =
            out_transform(n, k, y, x, 0, 0) + out_transform(n, k, y, x, 0, 1) +
            out_transform(n, k, y, x, 0, 2) + out_transform(n, k, y, x, 1, 0) +
            out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) +
            out_transform(n, k, y, x, 2, 0) + out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2);
        out_hold(n, k, y, x, 0, 1) =
            out_transform(n, k, y, x, 0, 1) - out_transform(n, k, y, x, 0, 2) -
            out_transform(n, k, y, x, 0, 3) + out_transform(n, k, y, x, 1, 1) -
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) +
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 2, 3);
        out_hold(n, k, y, x, 1, 0) =
            out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) +
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 2, 0) -
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 3, 0) - out_transform(n, k, y, x, 3, 1) -
            out_transform(n, k, y, x, 3, 2);
        out_hold(n, k, y, x, 1, 1) =
            out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) -
            out_transform(n, k, y, x, 1, 3) - out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2) + out_transform(n, k, y, x, 2, 3) -
            out_transform(n, k, y, x, 3, 1) + out_transform(n, k, y, x, 3, 2) +
            out_transform(n, k, y, x, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < OutTileSizeH; ++j)
        {
            std::size_t ho = OutTileSizeH * y + j;
            for(int i = 0; i < OutTileSizeW; ++i)
            {
                std::size_t wo    = OutTileSizeW * x + i;
                out(n, k, ho, wo) = out_hold(n, k, y, x, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, Y, X)(num_thread);
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
318
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(ref.mData[i] - result.mData[i]);
        float diff = std::abs(ref.mData[i] - result.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

int main()
{
Chao Liu's avatar
Chao Liu committed
338
#if 0
Chao Liu's avatar
Chao Liu committed
339
340
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
Chao Liu's avatar
Chao Liu committed
341
342
    constexpr unsigned HI = 4;
    constexpr unsigned WI = 4;
Chao Liu's avatar
Chao Liu committed
343
344
345
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
346
#elif 0
Chao Liu's avatar
Chao Liu committed
347
348
    constexpr unsigned N = 1;
    constexpr unsigned C = 1;
Chao Liu's avatar
Chao Liu committed
349
350
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
351
    constexpr unsigned K = 1;
Chao Liu's avatar
Chao Liu committed
352
353
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
354
#elif 1
Chao Liu's avatar
Chao Liu committed
355
356
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 256;
Chao Liu's avatar
Chao Liu committed
357
358
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
359
360
361
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
362
#elif 0
Chao Liu's avatar
Chao Liu committed
363
364
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
Chao Liu's avatar
Chao Liu committed
365
366
    constexpr unsigned HI = 56;
    constexpr unsigned WI = 56;
Chao Liu's avatar
Chao Liu committed
367
368
369
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
370
#elif 0
Chao Liu's avatar
Chao Liu committed
371
372
373
374
375
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
    constexpr unsigned HI = 66;
    constexpr unsigned WI = 66;
    constexpr unsigned K  = 64;
Chao Liu's avatar
Chao Liu committed
376
377
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
378
#endif
Chao Liu's avatar
Chao Liu committed
379

Chao Liu's avatar
Chao Liu committed
380
381
382
383
    auto in_nchw_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_kcsr_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
    auto out_nkhw_desc =
        get_convolution_output_default_4d_tensor_descriptor(in_nchw_desc, wei_kcsr_desc);
Chao Liu's avatar
Chao Liu committed
384

Chao Liu's avatar
Chao Liu committed
385
386
387
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
    ostream_ConstantTensorDescriptor(wei_kcsr_desc, std::cout << "wei_kcsr_desc: ");
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
388

Chao Liu's avatar
Chao Liu committed
389
390
391
392
    Tensor<float> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<float> wei_kcsr(make_TensorDescriptor(wei_kcsr_desc));
    Tensor<float> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<float> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
393

Chao Liu's avatar
Chao Liu committed
394
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
395
396

#if 0
Chao Liu's avatar
Chao Liu committed
397
398
    in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
399
#elif 1
Chao Liu's avatar
Chao Liu committed
400
401
    in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
402
403
404
405
#endif

#if 1
    auto wei_srck_desc = make_ConstantTensorDescriptor(Sequence<S, R, C, K>{});
Chao Liu's avatar
Chao Liu committed
406
    ostream_ConstantTensorDescriptor(wei_srck_desc, std::cout << "wei_srck_desc: ");
Chao Liu's avatar
Chao Liu committed
407
408
409
410
411
412
413
    Tensor<float> wei_srck(make_TensorDescriptor(wei_srck_desc));

    auto f_reorder_kcsr2srck = [&](auto k, auto c, auto s, auto r) {
        wei_srck(s, r, c, k) = wei_kcsr(k, c, s, r);
    };

    make_ParallelTensorFunctor(f_reorder_kcsr2srck, K, C, S, R)(num_thread);
Chao Liu's avatar
Chao Liu committed
414
#endif
Chao Liu's avatar
Chao Liu committed
415

Chao Liu's avatar
Chao Liu committed
416
    for(int i = 0; i < 40; ++i)
Chao Liu's avatar
Chao Liu committed
417
    {
Chao Liu's avatar
Chao Liu committed
418
#if 0
Chao Liu's avatar
Chao Liu committed
419
        device_direct_convolution_1(in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device);
420
#elif 0
Chao Liu's avatar
Chao Liu committed
421
422
423
424
425
        device_direct_convolution_2(
            in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device);
#elif 0
        device_implicit_gemm_convolution(
            in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device);
Chao Liu's avatar
Chao Liu committed
426
#elif 1
Chao Liu's avatar
Chao Liu committed
427
428
        device_implicit_gemm_convolution(
            in_nchw_desc, in_nchw, wei_srck_desc, wei_srck, out_nkhw_desc, out_nkhw_device);
Chao Liu's avatar
Chao Liu committed
429
#elif 0
Chao Liu's avatar
Chao Liu committed
430
431
        device_winograd_convolution(
            in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device);
432
#endif
Chao Liu's avatar
Chao Liu committed
433
    }
Chao Liu's avatar
Chao Liu committed
434

Chao Liu's avatar
Chao Liu committed
435
#if 1
Chao Liu's avatar
Chao Liu committed
436
437
    host_winograd_3x3_convolution(in_nchw, wei_kcsr, out_nkhw_host);
    check_error(out_nkhw_host, out_nkhw_device);
438
#elif 0
Chao Liu's avatar
Chao Liu committed
439
440
    host_direct_convolution(in_nchw, wei_kcsr, out_nkhw_host);
    check_error(out_nkhw_host, out_nkhw_device);
441
#endif
Chao Liu's avatar
Chao Liu committed
442

Chao Liu's avatar
Chao Liu committed
443
#if 0
Chao Liu's avatar
Chao Liu committed
444
445
446
447
    LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
    LogRange(std::cout << "wei_kcsr: ", wei_kcsr.mData, ",") << std::endl;
    LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
    LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
448
#endif
449
}