conv.cu 7.98 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
5
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
6
7
8
9
#include "constant_tensor_descriptor.cuh"
#include "device_tensor_descriptor.cuh"

#if 0
Chao Liu's avatar
Chao Liu committed
10
#include "direct_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
11
12
13
#else
#include "constant_direct_convolution.cuh"
#endif
Chao Liu's avatar
Chao Liu committed
14

Chao Liu's avatar
Chao Liu committed
15
template <class T>
Chao Liu's avatar
Chao Liu committed
16
struct GeneratorConstant
Chao Liu's avatar
Chao Liu committed
17
18
19
20
21
22
23
{
    T value = 0;

    template <class... Is>
    T operator()(Is... is)
    {
        return value;
Chao Liu's avatar
Chao Liu committed
24
25
26
27
28
29
30
31
32
33
    }
};

template <class T>
struct GeneratorTensor
{
    template <class... Is>
    T operator()(Is... is)
    {
#if 0
Chao Liu's avatar
Chao Liu committed
34
35
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
Chao Liu's avatar
Chao Liu committed
36
37
38
39
40
41
42
#else
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
Chao Liu's avatar
Chao Liu committed
43
44
45
46
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
void host_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho + y;
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo + x;
                    v += in(n, c, hi, wi) * wei(k, c, y, x);
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
111
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
112
113
}

Chao Liu's avatar
Chao Liu committed
114
115
116
template <class T, class InDesc, class WeiDesc, class OutDesc>
void device_convolution(
    InDesc, const Tensor<T>& in, WeiDesc, const Tensor<T>& wei, OutDesc, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
117
{
Chao Liu's avatar
Chao Liu committed
118
119
120
121
    DeviceTensorDescriptor<4> in_desc_device(in.mDesc);
    DeviceTensorDescriptor<4> wei_desc_device(wei.mDesc);
    DeviceTensorDescriptor<4> out_desc_device(out.mDesc);

Chao Liu's avatar
Chao Liu committed
122
    printf("__func__: in_desc_device: {%u %u %u %u}, {%u %u %u %u}\n",
Chao Liu's avatar
Chao Liu committed
123
124
125
           in_desc_device.GetLength(0),
           in_desc_device.GetLength(1),
           in_desc_device.GetLength(2),
Chao Liu's avatar
Chao Liu committed
126
127
128
129
130
           in_desc_device.GetLength(3),
           in_desc_device.GetStride(0),
           in_desc_device.GetStride(1),
           in_desc_device.GetStride(2),
           in_desc_device.GetStride(3));
Chao Liu's avatar
Chao Liu committed
131
132
133
134
135
136

    std::size_t data_sz = sizeof(T);
    DeviceMem in_device_buf(data_sz * in.mDesc.GetElementSpace());
    DeviceMem wei_device_buf(data_sz * wei.mDesc.GetElementSpace());
    DeviceMem out_device_buf(data_sz * out.mDesc.GetElementSpace());

Chao Liu's avatar
Chao Liu committed
137
138
    int num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
139
    out.GenerateTensorValue(GeneratorConstant<float>{0}, num_thread);
Chao Liu's avatar
Chao Liu committed
140

Chao Liu's avatar
Chao Liu committed
141
142
    in_device_buf.ToDevice(in.mData.data());
    wei_device_buf.ToDevice(wei.mData.data());
Chao Liu's avatar
Chao Liu committed
143
    out_device_buf.ToDevice(out.mData.data());
Chao Liu's avatar
Chao Liu committed
144

Chao Liu's avatar
Chao Liu committed
145
    dim3 block_dim(64, 1, 1);
Chao Liu's avatar
Chao Liu committed
146
    dim3 grid_dim(1, 1, 1);
Chao Liu's avatar
Chao Liu committed
147
#if 0
Chao Liu's avatar
Chao Liu committed
148
    gridwise_convolution<T, 3, 3, 4, 4, 2, 2, 1, 1, 8, 8, 1>
Chao Liu's avatar
Chao Liu committed
149
150
151
152
153
154
        <<<grid_dim, block_dim>>>(in_desc_device,
                                  static_cast<T*>(in_device_buf.GetDeviceBuffer()),
                                  wei_desc_device,
                                  static_cast<T*>(wei_device_buf.GetDeviceBuffer()),
                                  out_desc_device,
                                  static_cast<T*>(out_device_buf.GetDeviceBuffer()));
Chao Liu's avatar
Chao Liu committed
155
156
157
158
159
160
161
162
163
#else
    gridwise_convolution<T, InDesc, WeiDesc, OutDesc, 4, 4, 2, 2, 1, 1, 8, 8, 1>
        <<<grid_dim, block_dim>>>(InDesc{},
                                  static_cast<T*>(in_device_buf.GetDeviceBuffer()),
                                  WeiDesc{},
                                  static_cast<T*>(wei_device_buf.GetDeviceBuffer()),
                                  OutDesc{},
                                  static_cast<T*>(out_device_buf.GetDeviceBuffer()));
#endif
Chao Liu's avatar
Chao Liu committed
164

Chao Liu's avatar
Chao Liu committed
165
    checkCudaErrors(cudaGetLastError());
Chao Liu's avatar
Chao Liu committed
166
167
168
169
170
    out_device_buf.FromDevice(out.mData.data());
}

int main()
{
Chao Liu's avatar
Chao Liu committed
171
172
173
174
175
176
177
178
#if 1
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
    constexpr unsigned HI = 18;
    constexpr unsigned WI = 18;
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
179
#elif 0
Chao Liu's avatar
Chao Liu committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    constexpr unsigned N = 1;
    constexpr unsigned C = 1;
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
    constexpr unsigned K = 1;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
#elif 0
    constexpr unsigned N  = 3;
    constexpr unsigned C  = 16;
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
    constexpr unsigned K  = 4;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
195
#endif
Chao Liu's avatar
Chao Liu committed
196
197
198
199
200
201
202
203
204
205
206
207
208

    auto in_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
    auto out_desc = get_output_4d_tensor_descriptor(in_desc, wei_desc);

    ostream_ConstantTensorDescriptor(in_desc, std::cout << "in_desc: ");
    ostream_ConstantTensorDescriptor(wei_desc, std::cout << "wei_desc: ");
    ostream_ConstantTensorDescriptor(out_desc, std::cout << "out_desc: ");

    Tensor<float> in(make_TensorDescriptor(in_desc));
    Tensor<float> wei(make_TensorDescriptor(wei_desc));
    Tensor<float> out_host(make_TensorDescriptor(out_desc));

Chao Liu's avatar
Chao Liu committed
209
210
211
212
    Tensor<float> out_device = out_host;

    int num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
213
214
    in.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
Chao Liu's avatar
Chao Liu committed
215

Chao Liu's avatar
Chao Liu committed
216
217
    host_convolution(in, wei, out_host);
    device_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
Chao Liu's avatar
Chao Liu committed
218
219
220

    std::cout << __func__ << ": done" << std::endl;

Chao Liu's avatar
Chao Liu committed
221
222
223
    LogRange(std::cout << __func__ << "in : ", in.mData, ",") << std::endl;
    LogRange(std::cout << __func__ << "wei: ", wei.mData, ",") << std::endl;
    LogRange(std::cout, out_host.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
224
    LogRange(std::cout, out_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
225
226
227
228
229
230
231

    float error = 0;
    for(int i = 0; i < out_host.mData.size(); ++i)
    {
        error += std::abs(out_host.mData[i] - out_device.mData[i]);
    }
    std::cout << "error: " << error << std::endl;
Chao Liu's avatar
Chao Liu committed
232
}