conv.cu 6.61 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
#include "constant_tensor_descriptor.cuh"
Chao Liu's avatar
Chao Liu committed
8
#include "device_direct_convolution_3.cuh"
Chao Liu's avatar
Chao Liu committed
9

Chao Liu's avatar
Chao Liu committed
10
template <class T>
Chao Liu's avatar
Chao Liu committed
11
struct GeneratorConstant
Chao Liu's avatar
Chao Liu committed
12
13
14
15
16
17
18
{
    T value = 0;

    template <class... Is>
    T operator()(Is... is)
    {
        return value;
Chao Liu's avatar
Chao Liu committed
19
20
21
22
23
24
25
26
27
    }
};

template <class T>
struct GeneratorTensor
{
    template <class... Is>
    T operator()(Is... is)
    {
Chao Liu's avatar
Chao Liu committed
28
#if 1
Chao Liu's avatar
Chao Liu committed
29
        return T(std::rand()) / T(RAND_MAX);
Chao Liu's avatar
Chao Liu committed
30
31
32
#elif 1
        return 1;
#elif 0
Chao Liu's avatar
Chao Liu committed
33
34
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
#else
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
Chao Liu's avatar
Chao Liu committed
42
43
44
45
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
void host_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho + y;
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo + x;
                    v += in(n, c, hi, wi) * wei(k, c, y, x);
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
110
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
111
112
113
114
}

int main()
{
Chao Liu's avatar
Chao Liu committed
115

Chao Liu's avatar
Chao Liu committed
116
#if 0
Chao Liu's avatar
Chao Liu committed
117
118
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
Chao Liu's avatar
Chao Liu committed
119
120
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
121
122
123
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
124
#elif 1
Chao Liu's avatar
Chao Liu committed
125
126
127
128
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
129
    constexpr unsigned K = 64;
Chao Liu's avatar
Chao Liu committed
130
131
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
132
133
134
135
136
137
138
139
#elif 0
    constexpr unsigned N = 1;
    constexpr unsigned C = 1;
    constexpr unsigned HI = 18;
    constexpr unsigned WI = 18;
    constexpr unsigned K = 1;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
140
#elif 0
Chao Liu's avatar
Chao Liu committed
141
142
    constexpr unsigned N = 2;
    constexpr unsigned C = 3;
Chao Liu's avatar
Chao Liu committed
143
144
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
Chao Liu's avatar
Chao Liu committed
145
146
147
    constexpr unsigned K = 5;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
148
149
150
151
152
153
154
155
#elif 0
    constexpr unsigned N  = 3;
    constexpr unsigned C  = 16;
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
    constexpr unsigned K  = 4;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
156
#endif
Chao Liu's avatar
Chao Liu committed
157
158
159
160
161
162
163
164
165
166
167
168

    auto in_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
    auto out_desc = get_output_4d_tensor_descriptor(in_desc, wei_desc);

    ostream_ConstantTensorDescriptor(in_desc, std::cout << "in_desc: ");
    ostream_ConstantTensorDescriptor(wei_desc, std::cout << "wei_desc: ");
    ostream_ConstantTensorDescriptor(out_desc, std::cout << "out_desc: ");

    Tensor<float> in(make_TensorDescriptor(in_desc));
    Tensor<float> wei(make_TensorDescriptor(wei_desc));
    Tensor<float> out_host(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
169
    Tensor<float> out_device(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
170

Chao Liu's avatar
Chao Liu committed
171
172
    int num_thread = std::thread::hardware_concurrency();

Chao Liu's avatar
Chao Liu committed
173
#if 0
Chao Liu's avatar
Chao Liu committed
174
175
    in.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor<float>{}, num_thread);
Chao Liu's avatar
Chao Liu committed
176
#endif
Chao Liu's avatar
Chao Liu committed
177

Chao Liu's avatar
Chao Liu committed
178
179
180
181
    for(int i = 0; i < 20; ++i)
    {
        device_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
    }
Chao Liu's avatar
Chao Liu committed
182

Chao Liu's avatar
Chao Liu committed
183
#if 0
Chao Liu's avatar
Chao Liu committed
184
    host_convolution(in, wei, out_host);
Chao Liu's avatar
Chao Liu committed
185

Chao Liu's avatar
Chao Liu committed
186
187
188
    float error      = 0;
    float max_diff   = 0;
    float host_value = 0, device_value = 0;
Chao Liu's avatar
Chao Liu committed
189
190
191
    for(int i = 0; i < out_host.mData.size(); ++i)
    {
        error += std::abs(out_host.mData[i] - out_device.mData[i]);
Chao Liu's avatar
Chao Liu committed
192
193
194
195
196
197
198
        float diff = std::abs(out_host.mData[i] - out_device.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            host_value   = out_host.mData[i];
            device_value = out_device.mData[i];
        }
Chao Liu's avatar
Chao Liu committed
199
200
    }
    std::cout << "error: " << error << std::endl;
Chao Liu's avatar
Chao Liu committed
201
202
203
    std::cout << "max_diff: " << max_diff << ", " << host_value << ", " << device_value
              << std::endl;
#endif
Chao Liu's avatar
Chao Liu committed
204
205

#if 0
Chao Liu's avatar
Chao Liu committed
206
207
208
209
    LogRange(std::cout << "in : ", in.mData, ",") << std::endl;
    LogRange(std::cout << "wei: ", wei.mData, ",") << std::endl;
    LogRange(std::cout << "out_host  : ", out_host.mData, ",") << std::endl;
    LogRange(std::cout << "out_device: ", out_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
210
#endif
Chao Liu's avatar
Chao Liu committed
211
}