profile_gemm_reduce_impl.hpp 15 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#pragma once
2
#include "check_err.hpp"
Chao Liu's avatar
Chao Liu committed
3
4
5
6
7
8
9
10
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
11
#include "reduction_operator.hpp"
Chao Liu's avatar
Chao Liu committed
12
13
14
15
16
17
18
19
#include "device_gemm_reduce.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

rocking5566's avatar
rocking5566 committed
20
21
22
using F32            = float;
using F16            = ck::half_t;
using DPtrsGlobal    = ck::Tuple<F32*, F32*>;
rocking5566's avatar
rocking5566 committed
23
using Div            = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, true>;
rocking5566's avatar
rocking5566 committed
24
25
26
using Identity       = ck::tensor_operation::element_wise::UnaryIdentic<F32, F32, false>;
using Square         = ck::tensor_operation::element_wise::UnarySquare<F32, F32, false>;
using DInElementOps  = ck::Tuple<Identity, Square>;
rocking5566's avatar
rocking5566 committed
27
using DOutElementOps = ck::Tuple<Div, Div>;
rocking5566's avatar
rocking5566 committed
28

Chao Liu's avatar
Chao Liu committed
29
30
31
32
using DeviceGemmReduceNoOpPtr = ck::tensor_operation::device::DeviceGemmReducePtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
rocking5566's avatar
rocking5566 committed
33
34
    DInElementOps,
    DOutElementOps>;
Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

void add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmReduceNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename DDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
bool profile_gemm_reduce_impl(int do_verification,
                              int init_method,
                              bool do_log,
JD's avatar
JD committed
66
                              bool time_kernel,
Chao Liu's avatar
Chao Liu committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
                              int M,
                              int N,
                              int K,
                              int StrideA,
                              int StrideB,
                              int StrideC)
{
    bool pass = true;

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
    Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));

    Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_host_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
    Tensor<DDataType> d0_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));
    Tensor<DDataType> d1_m_device_result(
        HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(M)})));

    std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
    std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
    std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
    std::cout << "d0_m: " << d0_m_host_result.mDesc << std::endl;
    std::cout << "d1_m: " << d1_m_host_result.mDesc << std::endl;

111
    std::size_t num_thread = 1;
Chao Liu's avatar
Chao Liu committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    switch(init_method)
    {
    case 0: break;
    case 1:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
        break;
    default:
        std::srand(0);
        a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
        b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
    }

rocking5566's avatar
rocking5566 committed
126
127
128
129
130
131
    using AElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp        = ck::tensor_operation::element_wise::PassThrough;
    using D0ReduceOp        = ck::reduce::Add<float>;
    using D1ReduceOp        = ck::reduce::Add<float>;
    using UnaryDivElementOp = ck::tensor_operation::element_wise::UnaryIdentic<float, float, true>;
rocking5566's avatar
rocking5566 committed
132
133
134
135
136
    using UnaryIdenticElementOp =
        ck::tensor_operation::element_wise::UnaryIdentic<float, float, false>;
    using UnarySquareElementOp =
        ck::tensor_operation::element_wise::UnarySquare<float, float, false>;
    using DxsInElementOps  = ck::Tuple<UnaryIdenticElementOp, UnarySquareElementOp>;
rocking5566's avatar
rocking5566 committed
137
    using DxsOutElementOps = ck::Tuple<UnaryDivElementOp, UnaryDivElementOp>;
rocking5566's avatar
rocking5566 committed
138

rocking5566's avatar
rocking5566 committed
139
140
141
142
143
144
145
    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};
    const auto d0_reduce_op = D0ReduceOp{};
    const auto d1_reduce_op = D1ReduceOp{};

    auto dxs_in_element_op  = DxsInElementOps{};
146
    auto dxs_out_element_op = DxsOutElementOps{N, N};
Chao Liu's avatar
Chao Liu committed
147
148
149

    if(do_verification)
    {
150
151
152
153
154
155
156
        using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                                BDataType,
                                                                                CDataType,
                                                                                DDataType,
                                                                                AElementOp,
                                                                                BElementOp,
                                                                                CElementOp>;
Chao Liu's avatar
Chao Liu committed
157

158
159
        using ReduceAccDataType = DDataType;

Chao Liu's avatar
Chao Liu committed
160
161
162
163
164
165
166
167
168
169
        auto ref_gemm    = ReferenceGemmInstance{};
        auto ref_invoker = ref_gemm.MakeInvoker();

        auto ref_argument = ref_gemm.MakeArgument(
            a_m_k, b_k_n, c_m_n_host_result, a_element_op, b_element_op, c_element_op);

        ref_invoker.Run(ref_argument);

        for(int m = 0; m < M; ++m)
        {
170
171
            ReduceAccDataType d0_acc = d0_reduce_op.GetIdentityValue();
            ReduceAccDataType d1_acc = d1_reduce_op.GetIdentityValue();
Chao Liu's avatar
Chao Liu committed
172
173
174

            for(int n = 0; n < N; ++n)
            {
175
176
177
178
                ReduceAccDataType c_val =
                    ck::type_convert<ReduceAccDataType>(c_m_n_host_result(m, n));
                ReduceAccDataType d0_val = 0;
                ReduceAccDataType d1_val = 0;
179

rocking5566's avatar
rocking5566 committed
180
181
                dxs_in_element_op(ck::Number<0>{})(d0_val, c_val);
                dxs_in_element_op(ck::Number<1>{})(d1_val, c_val);
182
183
                d0_reduce_op(d0_acc, d0_val);
                d1_reduce_op(d1_acc, d1_val);
Chao Liu's avatar
Chao Liu committed
184
185
            }

rocking5566's avatar
rocking5566 committed
186
187
            dxs_out_element_op(ck::Number<0>{})(d0_acc, d0_acc);
            dxs_out_element_op(ck::Number<1>{})(d1_acc, d1_acc);
188
189
            d0_m_host_result(m) = ck::type_convert<DDataType>(d0_acc);
            d1_m_host_result(m) = ck::type_convert<DDataType>(d1_acc);
Chao Liu's avatar
Chao Liu committed
190
191
192
193
194
195
196
197
198
        }
    }

    DeviceMem a_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
    DeviceMem d0_device_buf(sizeof(DDataType) * d0_m_device_result.mDesc.GetElementSpace());
    DeviceMem d1_device_buf(sizeof(DDataType) * d1_m_device_result.mDesc.GetElementSpace());

rocking5566's avatar
rocking5566 committed
199
200
201
    auto dxs_global = ck::make_tuple(static_cast<DDataType*>(d0_device_buf.GetDeviceBuffer()),
                                     static_cast<DDataType*>(d1_device_buf.GetDeviceBuffer()));

Chao Liu's avatar
Chao Liu committed
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());

    // add device GEMM instances
    std::vector<ck::tensor_operation::device::device_gemm_instance::DeviceGemmReduceNoOpPtr>
        gemm_ptrs;

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
                 is_same<CDataType, half_t>::value)
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_mk_nk_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_kn_mn_instances(
                    gemm_ptrs);
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_gemm_instance::
                add_device_gemm_reduce_xdl_cshuffle_f16_f16_f16_f32_f32_km_nk_mn_instances(
                    gemm_ptrs);
        }
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
263
                                          &dxs_global,
Chao Liu's avatar
Chao Liu committed
264
265
266
267
268
269
270
271
272
                                          M,
                                          N,
                                          K,
                                          StrideA,
                                          StrideB,
                                          StrideC,
                                          a_element_op,
                                          b_element_op,
                                          c_element_op,
rocking5566's avatar
rocking5566 committed
273
274
                                          dxs_in_element_op,
                                          dxs_out_element_op);
Chao Liu's avatar
Chao Liu committed
275
276
277
278
279

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
280
281
282
            // init DO, D1 to 0
            d0_device_buf.SetZero();
            d1_device_buf.SetZero();
Chao Liu's avatar
Chao Liu committed
283

JD's avatar
JD committed
284
285
            float ave_time =
                invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
Chao Liu's avatar
Chao Liu committed
286
287
288
289
290

            std::string gemm_name = gemm_ptr->GetTypeString();

            std::size_t flop = std::size_t(2) * M * N * K;

JD's avatar
JD committed
291
            std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
Chao Liu's avatar
Chao Liu committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
                                    sizeof(CDataType) * M * N + sizeof(CDataType) * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
                      << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
                c_device_buf.FromDevice(c_m_n_device_result.mData.data());
                d0_device_buf.FromDevice(d0_m_device_result.mData.data());
                d1_device_buf.FromDevice(d1_m_device_result.mData.data());

315
316
317
                ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData);
                ck::utils::check_err(d0_m_device_result.mData, d0_m_host_result.mData);
                ck::utils::check_err(d1_m_device_result.mData, d1_m_host_result.mData);
Chao Liu's avatar
Chao Liu committed
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351

                if(do_log)
                {
                    LogRangeAsType<float>(std::cout << "a : ", a_m_k.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "b: ", b_k_n.mData, ",") << std::endl;
                    LogRangeAsType<float>(std::cout << "c_host: ", c_m_n_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "c_device: ", c_m_n_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_host: ", d0_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d0_device: ", d0_m_device_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_host: ", d1_m_host_result.mData, ",")
                        << std::endl;
                    LogRangeAsType<float>(std::cout << "d1_device: ", d1_m_device_result.mData, ",")
                        << std::endl;
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;

    return pass;
}

} // namespace profiler
} // namespace ck