"tests/vscode:/vscode.git/clone" did not exist on "d1387ecee5262e75386ce8948ddcf9a4de0ebbfa"
gemm_split_k.cpp 8.79 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

ltqin's avatar
ltqin committed
4
5
6
#include <iostream>
#include <initializer_list>
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
7
8
9
10
11
12

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

13
14
#include "ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp"

Chao Liu's avatar
Chao Liu committed
15
#include "ck/library/utility/check_err.hpp"
16
17
18
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
Chao Liu's avatar
Chao Liu committed
19
20
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"

21
#include "ck/library/utility/host_gemm.hpp"
ltqin's avatar
ltqin committed
22

Chao Liu's avatar
Chao Liu committed
23
enum struct GemmMatrixLayout
ltqin's avatar
ltqin committed
24
25
26
27
28
29
30
31
32
33
34
35
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

36
    for(std::size_t i = 0; i < ref.mData.size(); ++i)
ltqin's avatar
ltqin committed
37
38
39
40
41
42
43
44
45
46
47
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}

48
struct gemmArgs
ltqin's avatar
ltqin committed
49
{
Chao Liu's avatar
Chao Liu committed
50
    GemmMatrixLayout layout;
51
52
53
54
55
56
57
58
    int M;
    int N;
    int K;
    int StrideA;
    int StrideB;
    int StrideC;
    int KBatch;
};
ltqin's avatar
ltqin committed
59

60
61
int test_gemm(const gemmArgs& args)
{
62
63
64
65
66
    using Row = ck::tensor_layout::gemm::RowMajor;
    using Col = ck::tensor_layout::gemm::ColumnMajor;

    using PassThrough = ck::tensor_operation::element_wise::PassThrough;

ltqin's avatar
ltqin committed
67
68
    bool a_row_major, b_row_major, c_row_major;

69
    switch(args.layout)
ltqin's avatar
ltqin committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
    {
    case GemmMatrixLayout::MK_KN_MN:
        a_row_major = true;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::MK_NK_MN:
        a_row_major = true;
        b_row_major = false;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_KN_MN:
        a_row_major = false;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_NK_MN:
        a_row_major = false;
        b_row_major = false;
        c_row_major = true;
        break;
    default: printf("not supported layout"); return 1;
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, bool row_major) {
            if(row_major)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

108
109
    Tensor<float> a_m_k(f_host_tensor_descriptor(args.M, args.K, args.StrideA, a_row_major));
    Tensor<float> b_k_n(f_host_tensor_descriptor(args.K, args.N, args.StrideB, b_row_major));
110
111
112
113
    Tensor<float> c_m_n_host_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
    Tensor<float> c_m_n_device_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
ltqin's avatar
ltqin committed
114
115

    // init data
116
    std::size_t num_thread = 1;
ltqin's avatar
ltqin committed
117
118
119
120
121
122
123
124
125
126
127
128
    a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<float>{}, num_thread);

    host_gemm_mk_kn_mn(a_m_k,
                       b_k_n,
                       c_m_n_host_result,
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{});

129
130
131
    DeviceMem a_device_buf(sizeof(float) * a_m_k.mDesc.GetElementSpaceSize());
    DeviceMem b_device_buf(sizeof(float) * b_k_n.mDesc.GetElementSpaceSize());
    DeviceMem c_device_buf(sizeof(float) * c_m_n_device_result.mDesc.GetElementSpaceSize());
ltqin's avatar
ltqin committed
132
133
134
135
136

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    auto test = [&](auto a_layout, auto b_layout, auto c_layout) {
        bool success = false;

        using DeviceOp = ck::tensor_operation::device::DeviceGemmSplitK<decltype(a_layout),
                                                                        decltype(b_layout),
                                                                        decltype(c_layout),
                                                                        float,
                                                                        float,
                                                                        float,
                                                                        PassThrough,
                                                                        PassThrough,
                                                                        PassThrough>;

        const auto gemm_ptrs =
            ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
                DeviceOp>::GetInstances();

        for(auto& gemm_ptr : gemm_ptrs)
        {
            auto argument_ptr =
                gemm_ptr->MakeArgumentPointer(static_cast<float*>(a_device_buf.GetDeviceBuffer()),
                                              static_cast<float*>(b_device_buf.GetDeviceBuffer()),
                                              static_cast<float*>(c_device_buf.GetDeviceBuffer()),
                                              args.M,
                                              args.N,
                                              args.K,
                                              args.StrideA,
                                              args.StrideB,
                                              args.StrideC,
                                              ck::tensor_operation::element_wise::PassThrough{},
                                              ck::tensor_operation::element_wise::PassThrough{},
                                              ck::tensor_operation::element_wise::PassThrough{},
                                              args.KBatch);

            auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

            if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
            {
                invoker_ptr->Run(argument_ptr.get());

                c_device_buf.FromDevice(c_m_n_device_result.mData.data());

                if(!check_out(c_m_n_host_result, c_m_n_device_result))
                {
                    success = false;
                    break;
                }
                success = true;
            }
        }

        return success;
    };

    bool success = false;
ltqin's avatar
ltqin committed
192

193
    if(args.layout == GemmMatrixLayout::MK_KN_MN)
ltqin's avatar
ltqin committed
194
    {
195
        success = test(Row{}, Row{}, Row{});
ltqin's avatar
ltqin committed
196
    }
197
    else if(args.layout == GemmMatrixLayout::MK_NK_MN)
ltqin's avatar
ltqin committed
198
    {
199
        success = test(Row{}, Col{}, Row{});
ltqin's avatar
ltqin committed
200
    }
201
    else if(args.layout == GemmMatrixLayout::KM_KN_MN)
ltqin's avatar
ltqin committed
202
    {
203
        success = test(Col{}, Row{}, Row{});
ltqin's avatar
ltqin committed
204
205
206
    }
    else
    {
207
        success = test(Col{}, Col{}, Row{});
ltqin's avatar
ltqin committed
208
209
    }

210
    auto error_code = 0;
ltqin's avatar
ltqin committed
211
212
213
214
215
216
217
    if(success)
    {
        std::cout << "test split k : Pass" << std::endl;
    }
    else
    {
        std::cout << "test split k: Fail " << std::endl;
218
        error_code = -1; // test needs to report failure
219
220
221
222
223
224
225
226
227
    }
    return error_code;
}

int main(int argc, char* argv[])
{
    std::vector<gemmArgs> test_cases;
    if(argc == 1)
    {
Chao Liu's avatar
Chao Liu committed
228
        test_cases = {{GemmMatrixLayout::MK_KN_MN, 3, 3, 3, 3, 3, 3, 1}};
229
230
231
232
233
        // JD: Populate with more and meaningful
        return 0;
    }
    else if(argc == 9)
    {
Chao Liu's avatar
Chao Liu committed
234
        const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));
235

236
237
238
        const int M = std::stoi(argv[2]);
        const int N = std::stoi(argv[3]);
        const int K = std::stoi(argv[4]);
239

240
241
242
243
244
        const int StrideA = std::stoi(argv[5]);
        const int StrideB = std::stoi(argv[6]);
        const int StrideC = std::stoi(argv[7]);
        const int KBatch  = std::stoi(argv[8]);
        test_cases        = {{layout, M, N, K, StrideA, StrideB, StrideC, KBatch}};
245
246
247
248
249
250
251
252
253
254
    }
    else
    {
        printf("arg1: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, m] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, m] * B[n, k] = C[m, n])\n");
        printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC KBatch\n");
        return -1;
    }
255
    for(const auto& kinder : test_cases)
256
257
258
    {
        const auto res = test_gemm(kinder);
        if(!res)
259
            return -1;
ltqin's avatar
ltqin committed
260
261
262
    }
    return 0;
}