gemm_split_k.cpp 8.37 KB
Newer Older
ltqin's avatar
ltqin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
#include <iostream>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "host_gemm.hpp"
#include "tensor_layout.hpp"
#include "device_gemm_xdl_splitk.hpp"

Chao Liu's avatar
Chao Liu committed
15
enum struct GemmMatrixLayout
ltqin's avatar
ltqin committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};

using DeviceGemmNoOpPtr =
    ck::tensor_operation::device::DeviceGemmPtr<ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough,
                                                ck::tensor_operation::element_wise::PassThrough>;

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(std::vector<DeviceGemmNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(std::vector<DeviceGemmNoOpPtr>&);

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

    for(int i = 0; i < ref.mData.size(); ++i)
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}

60
struct gemmArgs
ltqin's avatar
ltqin committed
61
{
Chao Liu's avatar
Chao Liu committed
62
    GemmMatrixLayout layout;
63
64
65
66
67
68
69
70
    int M;
    int N;
    int K;
    int StrideA;
    int StrideB;
    int StrideC;
    int KBatch;
};
ltqin's avatar
ltqin committed
71

72
73
int test_gemm(const gemmArgs& args)
{
ltqin's avatar
ltqin committed
74
75
    bool a_row_major, b_row_major, c_row_major;

76
    switch(args.layout)
ltqin's avatar
ltqin committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    {
    case GemmMatrixLayout::MK_KN_MN:
        a_row_major = true;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::MK_NK_MN:
        a_row_major = true;
        b_row_major = false;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_KN_MN:
        a_row_major = false;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_NK_MN:
        a_row_major = false;
        b_row_major = false;
        c_row_major = true;
        break;
    default: printf("not supported layout"); return 1;
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, bool row_major) {
            if(row_major)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

115
116
    Tensor<float> a_m_k(f_host_tensor_descriptor(args.M, args.K, args.StrideA, a_row_major));
    Tensor<float> b_k_n(f_host_tensor_descriptor(args.K, args.N, args.StrideB, b_row_major));
117
118
119
120
    Tensor<float> c_m_n_host_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
    Tensor<float> c_m_n_device_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
ltqin's avatar
ltqin committed
121
122

    // init data
123
    std::size_t num_thread = 1;
ltqin's avatar
ltqin committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
    a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<float>{}, num_thread);

    host_gemm_mk_kn_mn(a_m_k,
                       b_k_n,
                       c_m_n_host_result,
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{});

    DeviceMem a_device_buf(sizeof(float) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(float) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(float) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
    std::vector<DeviceGemmNoOpPtr> gemm_ptrs;

147
    if(args.layout == GemmMatrixLayout::MK_KN_MN)
ltqin's avatar
ltqin committed
148
149
150
151
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
    }
152
    else if(args.layout == GemmMatrixLayout::MK_NK_MN)
ltqin's avatar
ltqin committed
153
154
155
156
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
    }
157
    else if(args.layout == GemmMatrixLayout::KM_KN_MN)
ltqin's avatar
ltqin committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
    }
    else
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
    }

    bool success = false;
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<float*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(c_device_buf.GetDeviceBuffer()),
175
176
177
178
179
180
                                          args.M,
                                          args.N,
                                          args.K,
                                          args.StrideA,
                                          args.StrideB,
                                          args.StrideC,
ltqin's avatar
ltqin committed
181
182
183
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
184
                                          args.KBatch);
ltqin's avatar
ltqin committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            invoker_ptr->Run(argument_ptr.get(), 0);

            c_device_buf.FromDevice(c_m_n_device_result.mData.data());
            if(!check_out(c_m_n_host_result, c_m_n_device_result))
            {
                success = false;
                break;
            }
            success = true;
        }
    }
201
    auto error_code = 0;
ltqin's avatar
ltqin committed
202
203
204
205
206
207
208
    if(success)
    {
        std::cout << "test split k : Pass" << std::endl;
    }
    else
    {
        std::cout << "test split k: Fail " << std::endl;
209
        error_code = -1; // test needs to report failure
210
211
212
213
214
215
216
217
218
    }
    return error_code;
}

int main(int argc, char* argv[])
{
    std::vector<gemmArgs> test_cases;
    if(argc == 1)
    {
Chao Liu's avatar
Chao Liu committed
219
        test_cases = {{GemmMatrixLayout::MK_KN_MN, 3, 3, 3, 3, 3, 3, 1}};
220
221
222
223
224
        // JD: Populate with more and meaningful
        return 0;
    }
    else if(argc == 9)
    {
Chao Liu's avatar
Chao Liu committed
225
        const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));
226

227
228
229
        const int M = std::stoi(argv[2]);
        const int N = std::stoi(argv[3]);
        const int K = std::stoi(argv[4]);
230

231
232
233
234
235
        const int StrideA = std::stoi(argv[5]);
        const int StrideB = std::stoi(argv[6]);
        const int StrideC = std::stoi(argv[7]);
        const int KBatch  = std::stoi(argv[8]);
        test_cases        = {{layout, M, N, K, StrideA, StrideB, StrideC, KBatch}};
236
237
238
239
240
241
242
243
244
245
    }
    else
    {
        printf("arg1: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, m] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, m] * B[n, k] = C[m, n])\n");
        printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC KBatch\n");
        return -1;
    }
246
    for(const auto& kinder : test_cases)
247
248
249
    {
        const auto res = test_gemm(kinder);
        if(!res)
250
            return -1;
ltqin's avatar
ltqin committed
251
252
253
    }
    return 0;
}