gemm_split_k.cpp 8.8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.

ltqin's avatar
ltqin committed
4
5
6
#include <iostream>
#include <initializer_list>
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20

#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_splitk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"

#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"

#include "ck/library/host_tensor/host_gemm.hpp"
ltqin's avatar
ltqin committed
21

Chao Liu's avatar
Chao Liu committed
22
enum struct GemmMatrixLayout
ltqin's avatar
ltqin committed
23
24
25
26
27
28
29
{
    MK_KN_MN, // 0
    MK_NK_MN, // 1
    KM_KN_MN, // 2
    KM_NK_MN, // 3
};

Chao Liu's avatar
Chao Liu committed
30
31
32
33
using DeviceGemmSplitKNoOpPtr = ck::tensor_operation::device::DeviceGemmSplitKPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;
ltqin's avatar
ltqin committed
34
35
36
37
38
39

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {

Chao Liu's avatar
Chao Liu committed
40
41
42
43
44
45
46
47
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(
    std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(
    std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(
    std::vector<DeviceGemmSplitKNoOpPtr>&);
void add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(
    std::vector<DeviceGemmSplitKNoOpPtr>&);
ltqin's avatar
ltqin committed
48
49
50
51
52
53
54
55
56
57
58

} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

template <typename T>
static bool check_out(const Tensor<T>& ref, const Tensor<T>& result)
{
    float max_diff = 1e-6;

59
    for(std::size_t i = 0; i < ref.mData.size(); ++i)
ltqin's avatar
ltqin committed
60
61
62
63
64
65
66
67
68
69
70
    {
        float diff = std::abs(double(ref.mData[i]) - double(result.mData[i]));
        if(max_diff < diff)
        {
            return false;
        }
    }

    return true;
}

71
struct gemmArgs
ltqin's avatar
ltqin committed
72
{
Chao Liu's avatar
Chao Liu committed
73
    GemmMatrixLayout layout;
74
75
76
77
78
79
80
81
    int M;
    int N;
    int K;
    int StrideA;
    int StrideB;
    int StrideC;
    int KBatch;
};
ltqin's avatar
ltqin committed
82

83
84
int test_gemm(const gemmArgs& args)
{
ltqin's avatar
ltqin committed
85
86
    bool a_row_major, b_row_major, c_row_major;

87
    switch(args.layout)
ltqin's avatar
ltqin committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
    {
    case GemmMatrixLayout::MK_KN_MN:
        a_row_major = true;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::MK_NK_MN:
        a_row_major = true;
        b_row_major = false;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_KN_MN:
        a_row_major = false;
        b_row_major = true;
        c_row_major = true;
        break;
    case GemmMatrixLayout::KM_NK_MN:
        a_row_major = false;
        b_row_major = false;
        c_row_major = true;
        break;
    default: printf("not supported layout"); return 1;
    }

    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, bool row_major) {
            if(row_major)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

126
127
    Tensor<float> a_m_k(f_host_tensor_descriptor(args.M, args.K, args.StrideA, a_row_major));
    Tensor<float> b_k_n(f_host_tensor_descriptor(args.K, args.N, args.StrideB, b_row_major));
128
129
130
131
    Tensor<float> c_m_n_host_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
    Tensor<float> c_m_n_device_result(
        f_host_tensor_descriptor(args.M, args.N, args.StrideC, c_row_major));
ltqin's avatar
ltqin committed
132
133

    // init data
134
    std::size_t num_thread = 1;
ltqin's avatar
ltqin committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    a_m_k.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    b_k_n.GenerateTensorValue(GeneratorTensor_2<float>{-5, 5}, num_thread);
    // set zero to c_device_buf
    c_m_n_device_result.GenerateTensorValue(GeneratorTensor_0<float>{}, num_thread);

    host_gemm_mk_kn_mn(a_m_k,
                       b_k_n,
                       c_m_n_host_result,
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{},
                       ck::tensor_operation::element_wise::PassThrough{});

    DeviceMem a_device_buf(sizeof(float) * a_m_k.mDesc.GetElementSpace());
    DeviceMem b_device_buf(sizeof(float) * b_k_n.mDesc.GetElementSpace());
    DeviceMem c_device_buf(sizeof(float) * c_m_n_device_result.mDesc.GetElementSpace());

    a_device_buf.ToDevice(a_m_k.mData.data());
    b_device_buf.ToDevice(b_k_n.mData.data());
    c_device_buf.ToDevice(c_m_n_device_result.mData.data());

    // add device GEMM instances
Chao Liu's avatar
Chao Liu committed
156
    std::vector<DeviceGemmSplitKNoOpPtr> gemm_ptrs;
ltqin's avatar
ltqin committed
157

158
    if(args.layout == GemmMatrixLayout::MK_KN_MN)
ltqin's avatar
ltqin committed
159
160
161
162
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_kn_mn_instances(gemm_ptrs);
    }
163
    else if(args.layout == GemmMatrixLayout::MK_NK_MN)
ltqin's avatar
ltqin committed
164
165
166
167
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(gemm_ptrs);
    }
168
    else if(args.layout == GemmMatrixLayout::KM_KN_MN)
ltqin's avatar
ltqin committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances(gemm_ptrs);
    }
    else
    {
        ck::tensor_operation::device::device_gemm_instance::
            add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances(gemm_ptrs);
    }

    bool success = false;
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
            gemm_ptr->MakeArgumentPointer(static_cast<float*>(a_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(b_device_buf.GetDeviceBuffer()),
                                          static_cast<float*>(c_device_buf.GetDeviceBuffer()),
186
187
188
189
190
191
                                          args.M,
                                          args.N,
                                          args.K,
                                          args.StrideA,
                                          args.StrideB,
                                          args.StrideC,
ltqin's avatar
ltqin committed
192
193
194
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
195
                                          args.KBatch);
ltqin's avatar
ltqin committed
196
197
198
199
200

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
JD's avatar
JD committed
201
            invoker_ptr->Run(argument_ptr.get());
ltqin's avatar
ltqin committed
202
203

            c_device_buf.FromDevice(c_m_n_device_result.mData.data());
JD's avatar
JD committed
204

ltqin's avatar
ltqin committed
205
206
207
208
209
210
211
212
            if(!check_out(c_m_n_host_result, c_m_n_device_result))
            {
                success = false;
                break;
            }
            success = true;
        }
    }
213
    auto error_code = 0;
ltqin's avatar
ltqin committed
214
215
216
217
218
219
220
    if(success)
    {
        std::cout << "test split k : Pass" << std::endl;
    }
    else
    {
        std::cout << "test split k: Fail " << std::endl;
221
        error_code = -1; // test needs to report failure
222
223
224
225
226
227
228
229
230
    }
    return error_code;
}

int main(int argc, char* argv[])
{
    std::vector<gemmArgs> test_cases;
    if(argc == 1)
    {
Chao Liu's avatar
Chao Liu committed
231
        test_cases = {{GemmMatrixLayout::MK_KN_MN, 3, 3, 3, 3, 3, 3, 1}};
232
233
234
235
236
        // JD: Populate with more and meaningful
        return 0;
    }
    else if(argc == 9)
    {
Chao Liu's avatar
Chao Liu committed
237
        const auto layout = static_cast<GemmMatrixLayout>(std::stoi(argv[1]));
238

239
240
241
        const int M = std::stoi(argv[2]);
        const int N = std::stoi(argv[3]);
        const int K = std::stoi(argv[4]);
242

243
244
245
246
247
        const int StrideA = std::stoi(argv[5]);
        const int StrideB = std::stoi(argv[6]);
        const int StrideC = std::stoi(argv[7]);
        const int KBatch  = std::stoi(argv[8]);
        test_cases        = {{layout, M, N, K, StrideA, StrideB, StrideC, KBatch}};
248
249
250
251
252
253
254
255
256
257
    }
    else
    {
        printf("arg1: matrix layout (0: A[m, k] * B[k, n] = C[m, n];\n");
        printf("                     1: A[m, k] * B[n, k] = C[m, n];\n");
        printf("                     2: A[k, m] * B[k, n] = C[m, n];\n");
        printf("                     3: A[k, m] * B[n, k] = C[m, n])\n");
        printf("arg2 to 7: M, N, K, StrideA, StrideB, StrideC KBatch\n");
        return -1;
    }
258
    for(const auto& kinder : test_cases)
259
260
261
    {
        const auto res = test_gemm(kinder);
        if(!res)
262
            return -1;
ltqin's avatar
ltqin committed
263
264
265
    }
    return 0;
}