conv.cu 24.7 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
#include "ConstantTensorDescriptor.cuh"
Chao Liu's avatar
Chao Liu committed
8
#include "conv_common.cuh"
Chao Liu's avatar
rename  
Chao Liu committed
9
10
#include "device_direct_convolution_1.cuh"
#include "device_direct_convolution_2.cuh"
Chao Liu's avatar
Chao Liu committed
11
#include "device_implicit_gemm_convolution_1_nchw_kcsr.cuh"
Chao Liu's avatar
Chao Liu committed
12
#include "device_implicit_gemm_convolution_1_nchw_srck_nkhw.cuh"
13
#include "device_implicit_gemm_convolution_1_chwn_csrk_khwn.cuh"
Chao Liu's avatar
Chao Liu committed
14
#include "device_implicit_gemm_convolution_1_chwn_csrk_khwn_padded.cuh"
Chao Liu's avatar
Chao Liu committed
15
#include "device_implicit_gemm_convolution_2_cnhw_srck_knhw.cuh"
Chao Liu's avatar
Chao Liu committed
16
#include "device_implicit_gemm_convolution_2_cnhw_csrk_knhw.cuh"
Chao Liu's avatar
Chao Liu committed
17
//#include "device_winograd_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
18

Chao Liu's avatar
Chao Liu committed
19
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
20
21
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
22
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
23
    {
Chao Liu's avatar
Chao Liu committed
24
        return 1;
Chao Liu's avatar
Chao Liu committed
25
26
27
    }
};

Chao Liu's avatar
Chao Liu committed
28
29
30
31
32
33
34
35
36
37
38
39
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

Chao Liu's avatar
Chao Liu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
struct GeneratorTensor_3
{
    template <class... Is>
    double operator()(Is... is)
    {
#if 0
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
#elif 1
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
struct GeneratorTensor_Checkboard
{
    template <class... Ts>
    double operator()(Ts... Xs) const
    {
        std::array<unsigned long, sizeof...(Ts)> dims = {{Xs...}};
        return std::accumulate(dims.begin(),
                               dims.end(),
                               true,
                               [](bool init, unsigned long x) -> int { return init != (x % 2); })
                   ? 1
                   : -1;
    }
};

Chao Liu's avatar
Chao Liu committed
74
75
76
77
78
79
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
80
81
82
83
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
98
99
100
101
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
102
103
104
105
106
107
108
109
110
111
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

112
113
114
template <class T, class LowerPads, class UpperPads>
void host_direct_convolution(
    const Tensor<T>& in_nchw, const Tensor<T>& wei_kcsr, Tensor<T>& out, LowerPads, UpperPads)
Chao Liu's avatar
Chao Liu committed
115
{
116
117
118
119
120
121
    unsigned h_pad_low = LowerPads{}.Get(Number<0>{});
    unsigned w_pad_low = LowerPads{}.Get(Number<1>{});

    unsigned h_pad_up = UpperPads{}.Get(Number<0>{});
    unsigned w_pad_up = UpperPads{}.Get(Number<1>{});

Chao Liu's avatar
Chao Liu committed
122
123
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
Chao Liu's avatar
Chao Liu committed
124
        for(int c = 0; c < wei_kcsr.mDesc.GetLengths()[1]; ++c)
Chao Liu's avatar
Chao Liu committed
125
        {
Chao Liu's avatar
Chao Liu committed
126
            for(int y = 0; y < wei_kcsr.mDesc.GetLengths()[2]; ++y)
Chao Liu's avatar
Chao Liu committed
127
            {
128
                int hi = ho + y - h_pad_low;
Chao Liu's avatar
Chao Liu committed
129
                for(int x = 0; x < wei_kcsr.mDesc.GetLengths()[3]; ++x)
Chao Liu's avatar
Chao Liu committed
130
                {
131
132
133
134
135
136
                    int wi = wo + x - w_pad_low;
                    if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                       wi < in_nchw.mDesc.GetLengths()[3])
                    {
                        v += in_nchw(n, c, hi, wi) * wei_kcsr(k, c, y, x);
                    }
Chao Liu's avatar
Chao Liu committed
137
138
139
140
141
142
143
144
145
146
147
148
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
149
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
150
151
}

152
153
154
template <class T, class LowerPads, class UpperPads>
void host_winograd_3x3_convolution(
    const Tensor<T>& in_nchw, const Tensor<T>& wei_kcsr, Tensor<T>& out, LowerPads, UpperPads)
Chao Liu's avatar
Chao Liu committed
155
{
Chao Liu's avatar
Chao Liu committed
156
157
158
    constexpr std::size_t OutTileSizeH = 2;
    constexpr std::size_t OutTileSizeW = 2;

Chao Liu's avatar
Chao Liu committed
159
160
161
162
    std::size_t N  = in_nchw.mDesc.GetLengths()[0];
    std::size_t C  = in_nchw.mDesc.GetLengths()[1];
    std::size_t HI = in_nchw.mDesc.GetLengths()[2];
    std::size_t WI = in_nchw.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
163

Chao Liu's avatar
Chao Liu committed
164
165
166
    std::size_t K = wei_kcsr.mDesc.GetLengths()[0];
    std::size_t S = wei_kcsr.mDesc.GetLengths()[2];
    std::size_t R = wei_kcsr.mDesc.GetLengths()[3];
Chao Liu's avatar
Chao Liu committed
167
168
169
170

    std::size_t HO = out.mDesc.GetLengths()[2];
    std::size_t WO = out.mDesc.GetLengths()[3];

171
172
173
174
175
176
    unsigned h_pad_low = LowerPads{}.Get(Number<0>{});
    unsigned w_pad_low = LowerPads{}.Get(Number<1>{});

    unsigned h_pad_up = UpperPads{}.Get(Number<0>{});
    unsigned w_pad_up = UpperPads{}.Get(Number<1>{});

Chao Liu's avatar
Chao Liu committed
177
178
179
180
181
    std::size_t InTileSizeH = OutTileSizeH + S - 1;
    std::size_t InTileSizeW = OutTileSizeW + R - 1;

    std::size_t Y = (HO + OutTileSizeH - 1) / OutTileSizeH;
    std::size_t X = (WO + OutTileSizeW - 1) / OutTileSizeW;
Chao Liu's avatar
Chao Liu committed
182

Chao Liu's avatar
Chao Liu committed
183
184
185
186
187
188
189
190
191
    Tensor<T> in_hold({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> in_transform({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> wei_transform({K, C, InTileSizeH, InTileSizeW});
    Tensor<T> out_transform({N, K, Y, X, InTileSizeH, InTileSizeH});
    Tensor<T> out_hold({N, K, Y, X, OutTileSizeH, OutTileSizeW});

    auto f_in_hold = [&](auto n, auto c, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
192
            int hi = OutTileSizeH * y + j - h_pad_low;
Chao Liu's avatar
Chao Liu committed
193
194
            for(int i = 0; i < InTileSizeW; ++i)
            {
195
196
197
198
199
200
201
202
203
204
205
                int wi = OutTileSizeW * x + i - w_pad_low;

                if(hi >= 0 && hi < in_nchw.mDesc.GetLengths()[2] && wi >= 0 &&
                   wi < in_nchw.mDesc.GetLengths()[3])
                {
                    in_hold(n, c, y, x, j, i) = in_nchw(n, c, hi, wi);
                }
                else
                {
                    in_hold(n, c, y, x, j, i) = T(0);
                }
Chao Liu's avatar
Chao Liu committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto y, auto x) {
        in_transform(n, c, y, x, 0, 0) = in_hold(n, c, y, x, 0, 0) - in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 0) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 1) = in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 2) = -in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 3) = in_hold(n, c, y, x, 0, 1) - in_hold(n, c, y, x, 0, 3) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 1, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 2, 0) = -in_hold(n, c, y, x, 1, 0) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 1) = -in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 2) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 3) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 3, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 0) + in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) -
                                         in_hold(n, c, y, x, 3, 1) + in_hold(n, c, y, x, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
Chao Liu's avatar
Chao Liu committed
249
        wei_transform(k, c, 0, 0) = wei_kcsr(k, c, 0, 0);
Chao Liu's avatar
Chao Liu committed
250
        wei_transform(k, c, 0, 1) =
Chao Liu's avatar
Chao Liu committed
251
            0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2);
Chao Liu's avatar
Chao Liu committed
252
        wei_transform(k, c, 0, 2) =
Chao Liu's avatar
Chao Liu committed
253
254
            0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 0, 1) + 0.5 * wei_kcsr(k, c, 0, 2);
        wei_transform(k, c, 0, 3) = wei_kcsr(k, c, 0, 2);
Chao Liu's avatar
Chao Liu committed
255
256

        wei_transform(k, c, 1, 0) =
Chao Liu's avatar
Chao Liu committed
257
258
259
260
261
262
263
264
265
266
267
            0.5 * wei_kcsr(k, c, 0, 0) + 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0);
        wei_transform(k, c, 1, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) +
                                    0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 1, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) + 0.25 * wei_kcsr(k, c, 1, 0) -
                                    0.25 * wei_kcsr(k, c, 1, 1) + 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
268
        wei_transform(k, c, 1, 3) =
Chao Liu's avatar
Chao Liu committed
269
            0.5 * wei_kcsr(k, c, 0, 2) + 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
270
271

        wei_transform(k, c, 2, 0) =
Chao Liu's avatar
Chao Liu committed
272
273
274
275
276
277
278
279
280
281
282
            0.5 * wei_kcsr(k, c, 0, 0) - 0.5 * wei_kcsr(k, c, 1, 0) + 0.5 * wei_kcsr(k, c, 2, 0);
        wei_transform(k, c, 2, 1) = 0.25 * wei_kcsr(k, c, 0, 0) + 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) -
                                    0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) + 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 2, 2) = 0.25 * wei_kcsr(k, c, 0, 0) - 0.25 * wei_kcsr(k, c, 0, 1) +
                                    0.25 * wei_kcsr(k, c, 0, 2) - 0.25 * wei_kcsr(k, c, 1, 0) +
                                    0.25 * wei_kcsr(k, c, 1, 1) - 0.25 * wei_kcsr(k, c, 1, 2) +
                                    0.25 * wei_kcsr(k, c, 2, 0) - 0.25 * wei_kcsr(k, c, 2, 1) +
                                    0.25 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
283
        wei_transform(k, c, 2, 3) =
Chao Liu's avatar
Chao Liu committed
284
            0.5 * wei_kcsr(k, c, 0, 2) - 0.5 * wei_kcsr(k, c, 1, 2) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
285

Chao Liu's avatar
Chao Liu committed
286
        wei_transform(k, c, 3, 0) = wei_kcsr(k, c, 2, 0);
Chao Liu's avatar
Chao Liu committed
287
        wei_transform(k, c, 3, 1) =
Chao Liu's avatar
Chao Liu committed
288
            0.5 * wei_kcsr(k, c, 2, 0) + 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
289
        wei_transform(k, c, 3, 2) =
Chao Liu's avatar
Chao Liu committed
290
291
            0.5 * wei_kcsr(k, c, 2, 0) - 0.5 * wei_kcsr(k, c, 2, 1) + 0.5 * wei_kcsr(k, c, 2, 2);
        wei_transform(k, c, 3, 3) = wei_kcsr(k, c, 2, 2);
Chao Liu's avatar
Chao Liu committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    };

    auto f_out_transform = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            for(int i = 0; i < InTileSizeW; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, y, x, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, y, x, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto y, auto x) {
        out_hold(n, k, y, x, 0, 0) =
            out_transform(n, k, y, x, 0, 0) + out_transform(n, k, y, x, 0, 1) +
            out_transform(n, k, y, x, 0, 2) + out_transform(n, k, y, x, 1, 0) +
            out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) +
            out_transform(n, k, y, x, 2, 0) + out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2);
        out_hold(n, k, y, x, 0, 1) =
            out_transform(n, k, y, x, 0, 1) - out_transform(n, k, y, x, 0, 2) -
            out_transform(n, k, y, x, 0, 3) + out_transform(n, k, y, x, 1, 1) -
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) +
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 2, 3);
        out_hold(n, k, y, x, 1, 0) =
            out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) +
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 2, 0) -
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 3, 0) - out_transform(n, k, y, x, 3, 1) -
            out_transform(n, k, y, x, 3, 2);
        out_hold(n, k, y, x, 1, 1) =
            out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) -
            out_transform(n, k, y, x, 1, 3) - out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2) + out_transform(n, k, y, x, 2, 3) -
            out_transform(n, k, y, x, 3, 1) + out_transform(n, k, y, x, 3, 2) +
            out_transform(n, k, y, x, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < OutTileSizeH; ++j)
        {
            std::size_t ho = OutTileSizeH * y + j;
            for(int i = 0; i < OutTileSizeW; ++i)
            {
                std::size_t wo    = OutTileSizeW * x + i;
                out(n, k, ho, wo) = out_hold(n, k, y, x, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, Y, X)(num_thread);
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
363
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(ref.mData[i] - result.mData[i]);
        float diff = std::abs(ref.mData[i] - result.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

int main()
{
Chao Liu's avatar
Chao Liu committed
383
#if 0
Chao Liu's avatar
Chao Liu committed
384
    constexpr unsigned N  = 1;
Chao Liu's avatar
Chao Liu committed
385
    constexpr unsigned C  = 1;
Chao Liu's avatar
Chao Liu committed
386
387
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
Chao Liu's avatar
tune  
Chao Liu committed
388
    constexpr unsigned K  = 1;
Chao Liu's avatar
Chao Liu committed
389
390
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
391

Chao Liu's avatar
Chao Liu committed
392
393
    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
394
#elif 0
395
    // 3x3, 34x34
Chao Liu's avatar
Chao Liu committed
396
397
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
Chao Liu's avatar
Chao Liu committed
398
399
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
400
401
402
    constexpr unsigned K = 64;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
403
404
405

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
Chao Liu's avatar
Chao Liu committed
406
#elif 0
407
    // 3x3, 56x56
Chao Liu's avatar
Chao Liu committed
408
409
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
Chao Liu's avatar
Chao Liu committed
410
411
    constexpr unsigned HI = 56;
    constexpr unsigned WI = 56;
Chao Liu's avatar
Chao Liu committed
412
413
414
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
415
#elif 0
416
417
418
419
420
421
422
423
424
425
    // 3x3, 58x58
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
    constexpr unsigned HI = 58;
    constexpr unsigned WI = 58;
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
#elif 0
    // 5x5, 36x36
Chao Liu's avatar
Chao Liu committed
426
    constexpr unsigned N  = 64;
Chao Liu's avatar
Chao Liu committed
427
428
429
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 36;
    constexpr unsigned WI = 36;
Chao Liu's avatar
Chao Liu committed
430
    constexpr unsigned K  = 64;
Chao Liu's avatar
Chao Liu committed
431
432
    constexpr unsigned S  = 5;
    constexpr unsigned R  = 5;
433
434
435
436
437
438
439
440
441
#elif 0
    // 7x7, 38x38
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 38;
    constexpr unsigned WI = 38;
    constexpr unsigned K  = 64;
    constexpr unsigned S  = 7;
    constexpr unsigned R  = 7;
442
#elif 0
443
444
445
446
447
448
449
450
    // 3x3, 58x58
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 128;
    constexpr unsigned HI = 58;
    constexpr unsigned WI = 58;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
451
452
453
454
455
456
457
458
459
460
461
462
#elif 0
    // 3x3 filter, 58x58 image, 0x0 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 128;
    constexpr unsigned HI = 58;
    constexpr unsigned WI = 58;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
Chao Liu's avatar
Chao Liu committed
463
#elif 0
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    // 3x3 filter, 56x56 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 128;
    constexpr unsigned HI = 56;
    constexpr unsigned WI = 56;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
#elif 0
    // 3x3 filter, 28x28 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
    constexpr unsigned K  = 512;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
Chao Liu's avatar
Chao Liu committed
487
488
489
490
491
492
493
494
495
496
497
498
#elif 1
    // 1x1 filter, 28x28 image
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
    constexpr unsigned K  = 512;
    constexpr unsigned S  = 1;
    constexpr unsigned R  = 1;

    constexpr unsigned HPad = 0;
    constexpr unsigned WPad = 0;
499
500
501
502
503
504
505
506
507
508
509
510
#elif 0
    // 3x3 filter, 20x84 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 20;
    constexpr unsigned WI = 84;
    constexpr unsigned K  = 256;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
Chao Liu's avatar
Chao Liu committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
#elif 0
    // 3x3 filter, 112x112 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 64;
    constexpr unsigned HI = 112;
    constexpr unsigned WI = 112;
    constexpr unsigned K  = 128;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
#elif 0
    // 5x5 filter, 20x86 image, 1x1 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 256;
    constexpr unsigned HI = 20;
    constexpr unsigned WI = 86;
    constexpr unsigned K  = 512;
    constexpr unsigned S  = 5;
    constexpr unsigned R  = 5;

    constexpr unsigned HPad = 1;
    constexpr unsigned WPad = 1;
#elif 0
    // 5x5 filter, 28x28 image, 2x2 padding
    constexpr unsigned N  = 16;
    constexpr unsigned C  = 192;
    constexpr unsigned HI = 28;
    constexpr unsigned WI = 28;
    constexpr unsigned K  = 32;
    constexpr unsigned S  = 5;
    constexpr unsigned R  = 5;

    constexpr unsigned HPad = 2;
    constexpr unsigned WPad = 2;
Chao Liu's avatar
Chao Liu committed
547
#endif
Chao Liu's avatar
Chao Liu committed
548

549
550
551
    auto lower_pads = Sequence<HPad, WPad>{};
    auto upper_pads = Sequence<HPad, WPad>{};

Chao Liu's avatar
Chao Liu committed
552
553
    auto in_nchw_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_kcsr_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
554
555
    auto out_nkhw_desc = get_convolution_with_padding_output_default_4d_tensor_descriptor(
        in_nchw_desc, wei_kcsr_desc, lower_pads, upper_pads);
Chao Liu's avatar
Chao Liu committed
556

Chao Liu's avatar
Chao Liu committed
557
558
559
    ostream_ConstantTensorDescriptor(in_nchw_desc, std::cout << "in_nchw_desc: ");
    ostream_ConstantTensorDescriptor(wei_kcsr_desc, std::cout << "wei_kcsr_desc: ");
    ostream_ConstantTensorDescriptor(out_nkhw_desc, std::cout << "out_nkhw_desc: ");
Chao Liu's avatar
Chao Liu committed
560

Chao Liu's avatar
Chao Liu committed
561
562
563
564
    Tensor<float> in_nchw(make_TensorDescriptor(in_nchw_desc));
    Tensor<float> wei_kcsr(make_TensorDescriptor(wei_kcsr_desc));
    Tensor<float> out_nkhw_host(make_TensorDescriptor(out_nkhw_desc));
    Tensor<float> out_nkhw_device(make_TensorDescriptor(out_nkhw_desc));
Chao Liu's avatar
Chao Liu committed
565

Chao Liu's avatar
Chao Liu committed
566
    std::size_t num_thread = std::thread::hardware_concurrency();
Chao Liu's avatar
Chao Liu committed
567

Chao Liu's avatar
Chao Liu committed
568
#if 0
Chao Liu's avatar
Chao Liu committed
569
570
    in_nchw.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
571
#elif 1
Chao Liu's avatar
Chao Liu committed
572
573
    in_nchw.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
574
575
576
#elif 1
    in_nchw.GenerateTensorValue(GeneratorTensor_2{-2, 2}, num_thread);
    wei_kcsr.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
577
578
#endif

Chao Liu's avatar
Chao Liu committed
579
    unsigned nrepeat = 100;
Chao Liu's avatar
Chao Liu committed
580

Chao Liu's avatar
Chao Liu committed
581
#if 1
Chao Liu's avatar
Chao Liu committed
582
#if 0
Chao Liu's avatar
Chao Liu committed
583
    device_direct_convolution_1
584
#elif 0
Chao Liu's avatar
Chao Liu committed
585
586
587
    device_direct_convolution_2
#elif 0
    device_implicit_gemm_convolution_1_nchw_kcsr
588
#elif 0
Chao Liu's avatar
Chao Liu committed
589
    device_implicit_gemm_convolution_1_nchw_srck_nkhw
590
#elif 0
591
    device_implicit_gemm_convolution_1_chwn_csrk_khwn
Chao Liu's avatar
Chao Liu committed
592
#elif 0
Chao Liu's avatar
Chao Liu committed
593
    device_implicit_gemm_convolution_2_cnhw_srck_knhw
Chao Liu's avatar
Chao Liu committed
594
595
#elif 1
    device_implicit_gemm_convolution_2_cnhw_csrk_knhw
596
#endif
Chao Liu's avatar
Chao Liu committed
597
    (in_nchw_desc, in_nchw, wei_kcsr_desc, wei_kcsr, out_nkhw_desc, out_nkhw_device, nrepeat);
598

Chao Liu's avatar
Chao Liu committed
599
600
601
602
603
604
605
606
607
608
#elif 1
    device_implicit_gemm_convolution_1_chwn_csrk_khwn_padded(in_nchw_desc,
                                                             in_nchw,
                                                             wei_kcsr_desc,
                                                             wei_kcsr,
                                                             out_nkhw_desc,
                                                             out_nkhw_device,
                                                             lower_pads,
                                                             upper_pads,
                                                             nrepeat);
609
#endif
Chao Liu's avatar
Chao Liu committed
610

Chao Liu's avatar
Chao Liu committed
611
#if 0
612
613
    if(S == 3 && R == 3)
    {
614
        host_winograd_3x3_convolution(in_nchw, wei_kcsr, out_nkhw_host, lower_pads, upper_pads);
615
616
617
    }
    else
    {
618
        host_direct_convolution(in_nchw, wei_kcsr, out_nkhw_host, lower_pads, upper_pads);
619
    }
Chao Liu's avatar
Chao Liu committed
620
    check_error(out_nkhw_host, out_nkhw_device);
621
#endif
Chao Liu's avatar
Chao Liu committed
622

Chao Liu's avatar
Chao Liu committed
623
#if 0
Chao Liu's avatar
Chao Liu committed
624
625
626
627
    LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
    LogRange(std::cout << "wei_kcsr: ", wei_kcsr.mData, ",") << std::endl;
    LogRange(std::cout << "out_nkhw_host  : ", out_nkhw_host.mData, ",") << std::endl;
    LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
628
#endif
629
}