recognition_en.md 18.8 KB
Newer Older
1
# Text Recognition
Khanh Tran's avatar
Khanh Tran committed
2

3
- [1. Data Preparation](#DATA_PREPARATION)
WenmuZhou's avatar
WenmuZhou committed
4
5
6
7
    - [1.1 Costom Dataset](#Costom_Dataset)
    - [1.2 Dataset Download](#Dataset_download)
    - [1.3 Dictionary](#Dictionary)  
    - [1.4 Add Space Category](#Add_space_category)
WenmuZhou's avatar
WenmuZhou committed
8

9
- [2. Training](#TRAINING)
WenmuZhou's avatar
WenmuZhou committed
10
    - [2.1 Data Augmentation](#Data_Augmentation)
tink2123's avatar
tink2123 committed
11
12
    - [2.2 General Training](#Training)
    - [2.3 Multi-language Training](#Multi_language)
13
    - [2.4 Training with Knowledge Distillation](#kd)
WenmuZhou's avatar
WenmuZhou committed
14

15
- [3. Evaluation](#EVALUATION)
WenmuZhou's avatar
WenmuZhou committed
16

17
18
- [4. Prediction](#PREDICTION)
- [5. Convert to Inference Model](#Inference)
WenmuZhou's avatar
WenmuZhou committed
19
20

<a name="DATA_PREPARATION"></a>
21
## 1. Data Preparation
Khanh Tran's avatar
Khanh Tran committed
22
23


WenmuZhou's avatar
WenmuZhou committed
24
PaddleOCR supports two data formats:
tink2123's avatar
tink2123 committed
25
26
- `LMDB` is used to train data sets stored in lmdb format(LMDBDataSet);
- `general data` is used to train data sets stored in text files(SimpleDataSet):
Khanh Tran's avatar
Khanh Tran committed
27
28
29
30
31
32

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
WenmuZhou's avatar
WenmuZhou committed
33
# linux and mac os
34
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
WenmuZhou's avatar
WenmuZhou committed
35
36
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
Khanh Tran's avatar
Khanh Tran committed
37
38
```

WenmuZhou's avatar
WenmuZhou committed
39
<a name="Costom_Dataset"></a>
40
### 1.1 Costom Dataset
Khanh Tran's avatar
Khanh Tran committed
41
42
43
44
45

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

WenmuZhou's avatar
WenmuZhou committed
46
It is recommended to put the training images in the same folder, and use a txt file (rec_gt_train.txt) to store the image path and label. The contents of the txt file are as follows:
Khanh Tran's avatar
Khanh Tran committed
47
48
49
50
51
52

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

WenmuZhou's avatar
WenmuZhou committed
53
54
train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单
WenmuZhou's avatar
WenmuZhou committed
55
...
Khanh Tran's avatar
Khanh Tran committed
56
57
58
59
60
61
```

The final training set should have the following file structure:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
62
  |-rec
WenmuZhou's avatar
WenmuZhou committed
63
64
65
66
67
68
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
Khanh Tran's avatar
Khanh Tran committed
69
70
71
72
73
74
75
76
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
77
  |-rec
Khanh Tran's avatar
Khanh Tran committed
78
79
80
81
82
83
84
85
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
WenmuZhou's avatar
WenmuZhou committed
86
87

<a name="Dataset_download"></a>
88
### 1.2 Dataset Download
WenmuZhou's avatar
WenmuZhou committed
89

tink2123's avatar
tink2123 committed
90
- ICDAR2015
WenmuZhou's avatar
WenmuZhou committed
91

tink2123's avatar
tink2123 committed
92
93
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
WenmuZhou's avatar
WenmuZhou committed
94

95
96
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.

WenmuZhou's avatar
WenmuZhou committed
97
98
99
100
101
102
103
104
105
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

tink2123's avatar
tink2123 committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:

```
# convert the official gt to rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```

The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:

![](../datasets/icdar_rec.png)


- Multilingual dataset

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)


WenmuZhou's avatar
WenmuZhou committed
126
<a name="Dictionary"></a>
tink2123's avatar
tink2123 committed
127
### 1.3 Dictionary
Khanh Tran's avatar
Khanh Tran committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

WenmuZhou's avatar
WenmuZhou committed
144
145
PaddleOCR has built-in dictionaries, which can be used on demand.

Khanh Tran's avatar
Khanh Tran committed
146
147
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

WenmuZhou's avatar
WenmuZhou committed
148
149
150
151
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

152
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
WenmuZhou's avatar
WenmuZhou committed
153

tink2123's avatar
tink2123 committed
154
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
WenmuZhou's avatar
WenmuZhou committed
155

tink2123's avatar
tink2123 committed
156
157
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

tink2123's avatar
tink2123 committed
158
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
WenmuZhou's avatar
WenmuZhou committed
159

160

WenmuZhou's avatar
WenmuZhou committed
161
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
162
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
Khanh Tran's avatar
Khanh Tran committed
163
164


tink2123's avatar
tink2123 committed
165
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
Khanh Tran's avatar
Khanh Tran committed
166

tink2123's avatar
tink2123 committed
167
168
169
170
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

WenmuZhou's avatar
WenmuZhou committed
171
<a name="Add_space_category"></a>
172
### 1.4 Add Space Category
tink2123's avatar
tink2123 committed
173

xmy0916's avatar
xmy0916 committed
174
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
tink2123's avatar
tink2123 committed
175

WenmuZhou's avatar
WenmuZhou committed
176
<a name="TRAINING"></a>
177
## 2.Training
Khanh Tran's avatar
Khanh Tran committed
178

tink2123's avatar
tink2123 committed
179
<a name="Data_Augmentation"></a>
tink2123's avatar
tink2123 committed
180
### 2.1 Data Augmentation
tink2123's avatar
tink2123 committed
181
182
183
184
185
186
187
188

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

<a name="Training"></a>
tink2123's avatar
tink2123 committed
189
### 2.2 General Training
tink2123's avatar
tink2123 committed
190

Khanh Tran's avatar
Khanh Tran committed
191
192
193
194
195
196
197
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
198
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
199
200
# Decompress model parameters
cd pretrain_models
tink2123's avatar
tink2123 committed
201
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
202
203
204
205
206
```

Start training:

```
tink2123's avatar
tink2123 committed
207
# GPU training Support single card and multi-card training
tink2123's avatar
tink2123 committed
208
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
tink2123's avatar
tink2123 committed
209
210
211
212

#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
xmy0916's avatar
xmy0916 committed
213
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
Khanh Tran's avatar
Khanh Tran committed
214
```
tink2123's avatar
tink2123 committed
215
216


Khanh Tran's avatar
Khanh Tran committed
217
218
219
220
221
222
223
224
225
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
xmy0916's avatar
xmy0916 committed
226
227
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
228
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
WenmuZhou's avatar
WenmuZhou committed
229
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
230
231
232
233
234
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
LDOUBLEV's avatar
LDOUBLEV committed
235
236
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
tink2123's avatar
tink2123 committed
237
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
Topdu's avatar
Topdu committed
238
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
andyjpaddle's avatar
andyjpaddle committed
239
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
Khanh Tran's avatar
Khanh Tran committed
240
241


WenmuZhou's avatar
WenmuZhou committed
242
For training Chinese data, it is recommended to use
xmy0916's avatar
xmy0916 committed
243
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
Khanh Tran's avatar
Khanh Tran committed
244
co
xmy0916's avatar
xmy0916 committed
245
Take `rec_chinese_lite_train_v2.0.yml` as an example:
Khanh Tran's avatar
Khanh Tran committed
246
247
248
```
Global:
  ...
xmy0916's avatar
xmy0916 committed
249
250
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
Khanh Tran's avatar
Khanh Tran committed
251
252
  # Modify character type
  ...
253
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
254
  use_space_char: True
Khanh Tran's avatar
Khanh Tran committed
255

256
257
258
259

Optimizer:
  ...
  # Add learning rate decay strategy
xmy0916's avatar
xmy0916 committed
260
261
262
263
264
265
266
267
268
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
269
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
289
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
Khanh Tran's avatar
Khanh Tran committed
305
306
307
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

WenmuZhou's avatar
WenmuZhou committed
308
<a name="Multi_language"></a>
tink2123's avatar
tink2123 committed
309
### 2.3 Multi-language Training
tink2123's avatar
tink2123 committed
310
311
312

Currently, the multi-language algorithms supported by PaddleOCR are:

tink2123's avatar
tink2123 committed
313
314
315
316
317
318
319
320
321
322
323
324
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
tink2123's avatar
tink2123 committed
325

tink2123's avatar
tink2123 committed
326
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
WenmuZhou's avatar
WenmuZhou committed
327
328
329
330
331
332
333
334
335


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
xmy0916's avatar
xmy0916 committed
336
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
WenmuZhou's avatar
WenmuZhou committed
337
338
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
xmy0916's avatar
xmy0916 committed
339
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
340
  use_space_char: True
xmy0916's avatar
xmy0916 committed
341

WenmuZhou's avatar
WenmuZhou committed
342
...
xmy0916's avatar
xmy0916 committed
343
344
345

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
346
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
347
348
349
350
351
352
353
354
355
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
356
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
357
358
359
360
361
362
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
WenmuZhou's avatar
WenmuZhou committed
363
```
Khanh Tran's avatar
Khanh Tran committed
364

365
366
367
368
369
370
<a name="kd"></a>

### 2.4 Training with Knowledge Distillation

Knowledge distillation is supported in PaddleOCR for text recognition training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

WenmuZhou's avatar
WenmuZhou committed
371
<a name="EVALUATION"></a>
372

373
## 3. Evalution
Khanh Tran's avatar
Khanh Tran committed
374

WenmuZhou's avatar
WenmuZhou committed
375
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
Khanh Tran's avatar
Khanh Tran committed
376
377
378

```
# GPU evaluation, Global.checkpoints is the weight to be tested
WenmuZhou's avatar
WenmuZhou committed
379
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
Khanh Tran's avatar
Khanh Tran committed
380
381
```

WenmuZhou's avatar
WenmuZhou committed
382
<a name="PREDICTION"></a>
383
## 4. Prediction
Khanh Tran's avatar
Khanh Tran committed
384
385
386
387


Using the model trained by paddleocr, you can quickly get prediction through the following script.

tink2123's avatar
tink2123 committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
Khanh Tran's avatar
Khanh Tran committed
409
410
411

```
# Predict English results
WenmuZhou's avatar
WenmuZhou committed
412
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
413
414
```

tink2123's avatar
tink2123 committed
415

Khanh Tran's avatar
Khanh Tran committed
416
417
Input image:

418
![](../imgs_words/en/word_1.png)
Khanh Tran's avatar
Khanh Tran committed
419
420
421
422
423

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
tink2123's avatar
tink2123 committed
424
        result: ('joint', 0.9998967)
Khanh Tran's avatar
Khanh Tran committed
425
426
```

xmy0916's avatar
xmy0916 committed
427
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
Khanh Tran's avatar
Khanh Tran committed
428
429
430

```
# Predict Chinese results
WenmuZhou's avatar
WenmuZhou committed
431
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
432
433
434
435
```

Input image:

436
![](../imgs_words/ch/word_1.jpg)
Khanh Tran's avatar
Khanh Tran committed
437
438
439
440
441

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
tink2123's avatar
tink2123 committed
442
        result: ('韩国小馆', 0.997218)
Khanh Tran's avatar
Khanh Tran committed
443
```
444
445
446

<a name="Inference"></a>

447
## 5. Convert to Inference Model
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

The recognition model is converted to the inference model in the same way as the detection, as follows:

```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.

python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy  Global.save_inference_dir=./inference/rec_crnn/
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are three files in the model save directory:

```
inference/det_db/
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
```

- Text recognition model Inference using custom characters dictionary

WenmuZhou's avatar
WenmuZhou committed
473
  If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`
474
475

  ```
WenmuZhou's avatar
WenmuZhou committed
476
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
477
  ```