recognition_en.md 18.6 KB
Newer Older
1
# Text Recognition
Khanh Tran's avatar
Khanh Tran committed
2

3
- [1. Data Preparation](#DATA_PREPARATION)
WenmuZhou's avatar
WenmuZhou committed
4
5
6
7
    - [1.1 Costom Dataset](#Costom_Dataset)
    - [1.2 Dataset Download](#Dataset_download)
    - [1.3 Dictionary](#Dictionary)  
    - [1.4 Add Space Category](#Add_space_category)
WenmuZhou's avatar
WenmuZhou committed
8

9
- [2. Training](#TRAINING)
WenmuZhou's avatar
WenmuZhou committed
10
    - [2.1 Data Augmentation](#Data_Augmentation)
tink2123's avatar
tink2123 committed
11
12
    - [2.2 General Training](#Training)
    - [2.3 Multi-language Training](#Multi_language)
WenmuZhou's avatar
WenmuZhou committed
13

14
- [3. Evaluation](#EVALUATION)
WenmuZhou's avatar
WenmuZhou committed
15

16
17
- [4. Prediction](#PREDICTION)
- [5. Convert to Inference Model](#Inference)
WenmuZhou's avatar
WenmuZhou committed
18
19

<a name="DATA_PREPARATION"></a>
20
## 1. Data Preparation
Khanh Tran's avatar
Khanh Tran committed
21
22


WenmuZhou's avatar
WenmuZhou committed
23
PaddleOCR supports two data formats:
tink2123's avatar
tink2123 committed
24
25
- `LMDB` is used to train data sets stored in lmdb format(LMDBDataSet);
- `general data` is used to train data sets stored in text files(SimpleDataSet):
Khanh Tran's avatar
Khanh Tran committed
26
27
28
29
30
31

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
WenmuZhou's avatar
WenmuZhou committed
32
# linux and mac os
33
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
WenmuZhou's avatar
WenmuZhou committed
34
35
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
Khanh Tran's avatar
Khanh Tran committed
36
37
```

WenmuZhou's avatar
WenmuZhou committed
38
<a name="Costom_Dataset"></a>
39
### 1.1 Costom Dataset
Khanh Tran's avatar
Khanh Tran committed
40
41
42
43
44

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

WenmuZhou's avatar
WenmuZhou committed
45
It is recommended to put the training images in the same folder, and use a txt file (rec_gt_train.txt) to store the image path and label. The contents of the txt file are as follows:
Khanh Tran's avatar
Khanh Tran committed
46
47
48
49
50
51

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

WenmuZhou's avatar
WenmuZhou committed
52
53
train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单
WenmuZhou's avatar
WenmuZhou committed
54
...
Khanh Tran's avatar
Khanh Tran committed
55
56
57
58
59
60
```

The final training set should have the following file structure:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
61
  |-rec
WenmuZhou's avatar
WenmuZhou committed
62
63
64
65
66
67
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
Khanh Tran's avatar
Khanh Tran committed
68
69
70
71
72
73
74
75
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
76
  |-rec
Khanh Tran's avatar
Khanh Tran committed
77
78
79
80
81
82
83
84
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
WenmuZhou's avatar
WenmuZhou committed
85
86

<a name="Dataset_download"></a>
87
### 1.2 Dataset Download
WenmuZhou's avatar
WenmuZhou committed
88

tink2123's avatar
tink2123 committed
89
- ICDAR2015
WenmuZhou's avatar
WenmuZhou committed
90

tink2123's avatar
tink2123 committed
91
92
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
WenmuZhou's avatar
WenmuZhou committed
93

94
95
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.

WenmuZhou's avatar
WenmuZhou committed
96
97
98
99
100
101
102
103
104
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

tink2123's avatar
tink2123 committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:

```
# convert the official gt to rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```

The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:

![](../datasets/icdar_rec.png)


- Multilingual dataset

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)


WenmuZhou's avatar
WenmuZhou committed
125
<a name="Dictionary"></a>
tink2123's avatar
tink2123 committed
126
### 1.3 Dictionary
Khanh Tran's avatar
Khanh Tran committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

WenmuZhou's avatar
WenmuZhou committed
143
144
PaddleOCR has built-in dictionaries, which can be used on demand.

Khanh Tran's avatar
Khanh Tran committed
145
146
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

WenmuZhou's avatar
WenmuZhou committed
147
148
149
150
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

151
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
WenmuZhou's avatar
WenmuZhou committed
152

tink2123's avatar
tink2123 committed
153
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
WenmuZhou's avatar
WenmuZhou committed
154

tink2123's avatar
tink2123 committed
155
156
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

tink2123's avatar
tink2123 committed
157
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
WenmuZhou's avatar
WenmuZhou committed
158

159

WenmuZhou's avatar
WenmuZhou committed
160
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
161
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
Khanh Tran's avatar
Khanh Tran committed
162
163


tink2123's avatar
tink2123 committed
164
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
Khanh Tran's avatar
Khanh Tran committed
165

tink2123's avatar
tink2123 committed
166
167
168
169
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

WenmuZhou's avatar
WenmuZhou committed
170
<a name="Add_space_category"></a>
171
### 1.4 Add Space Category
tink2123's avatar
tink2123 committed
172

xmy0916's avatar
xmy0916 committed
173
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
tink2123's avatar
tink2123 committed
174

WenmuZhou's avatar
WenmuZhou committed
175
<a name="TRAINING"></a>
176
## 2.Training
Khanh Tran's avatar
Khanh Tran committed
177

tink2123's avatar
tink2123 committed
178
<a name="Data_Augmentation"></a>
tink2123's avatar
tink2123 committed
179
### 2.1 Data Augmentation
tink2123's avatar
tink2123 committed
180
181
182
183
184
185
186
187

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

<a name="Training"></a>
tink2123's avatar
tink2123 committed
188
### 2.2 General Training
tink2123's avatar
tink2123 committed
189

Khanh Tran's avatar
Khanh Tran committed
190
191
192
193
194
195
196
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
197
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
198
199
# Decompress model parameters
cd pretrain_models
tink2123's avatar
tink2123 committed
200
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
201
202
203
204
205
```

Start training:

```
tink2123's avatar
tink2123 committed
206
# GPU training Support single card and multi-card training
tink2123's avatar
tink2123 committed
207
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
tink2123's avatar
tink2123 committed
208
209
210
211

#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
xmy0916's avatar
xmy0916 committed
212
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
Khanh Tran's avatar
Khanh Tran committed
213
```
tink2123's avatar
tink2123 committed
214
215


Khanh Tran's avatar
Khanh Tran committed
216
217
218
219
220
221
222
223
224
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
xmy0916's avatar
xmy0916 committed
225
226
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
227
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
WenmuZhou's avatar
WenmuZhou committed
228
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
229
230
231
232
233
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
LDOUBLEV's avatar
LDOUBLEV committed
234
235
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
tink2123's avatar
tink2123 committed
236
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
Topdu's avatar
Topdu committed
237
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
andyjpaddle's avatar
andyjpaddle committed
238
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
Khanh Tran's avatar
Khanh Tran committed
239
240


WenmuZhou's avatar
WenmuZhou committed
241
For training Chinese data, it is recommended to use
xmy0916's avatar
xmy0916 committed
242
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
Khanh Tran's avatar
Khanh Tran committed
243
co
xmy0916's avatar
xmy0916 committed
244
Take `rec_chinese_lite_train_v2.0.yml` as an example:
Khanh Tran's avatar
Khanh Tran committed
245
246
247
```
Global:
  ...
xmy0916's avatar
xmy0916 committed
248
249
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
Khanh Tran's avatar
Khanh Tran committed
250
251
  # Modify character type
  ...
252
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
253
  use_space_char: True
Khanh Tran's avatar
Khanh Tran committed
254

255
256
257
258

Optimizer:
  ...
  # Add learning rate decay strategy
xmy0916's avatar
xmy0916 committed
259
260
261
262
263
264
265
266
267
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
268
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
288
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
Khanh Tran's avatar
Khanh Tran committed
304
305
306
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

WenmuZhou's avatar
WenmuZhou committed
307
<a name="Multi_language"></a>
tink2123's avatar
tink2123 committed
308
### 2.3 Multi-language Training
tink2123's avatar
tink2123 committed
309
310
311

Currently, the multi-language algorithms supported by PaddleOCR are:

tink2123's avatar
tink2123 committed
312
313
314
315
316
317
318
319
320
321
322
323
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
tink2123's avatar
tink2123 committed
324

tink2123's avatar
tink2123 committed
325
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
WenmuZhou's avatar
WenmuZhou committed
326
327
328
329
330
331
332
333
334


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
xmy0916's avatar
xmy0916 committed
335
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
WenmuZhou's avatar
WenmuZhou committed
336
337
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
xmy0916's avatar
xmy0916 committed
338
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
339
  use_space_char: True
xmy0916's avatar
xmy0916 committed
340

WenmuZhou's avatar
WenmuZhou committed
341
...
xmy0916's avatar
xmy0916 committed
342
343
344

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
345
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
346
347
348
349
350
351
352
353
354
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
355
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
356
357
358
359
360
361
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
WenmuZhou's avatar
WenmuZhou committed
362
```
Khanh Tran's avatar
Khanh Tran committed
363

WenmuZhou's avatar
WenmuZhou committed
364
<a name="EVALUATION"></a>
365

366
## 3. Evalution
Khanh Tran's avatar
Khanh Tran committed
367

WenmuZhou's avatar
WenmuZhou committed
368
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
Khanh Tran's avatar
Khanh Tran committed
369
370
371

```
# GPU evaluation, Global.checkpoints is the weight to be tested
WenmuZhou's avatar
WenmuZhou committed
372
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
Khanh Tran's avatar
Khanh Tran committed
373
374
```

WenmuZhou's avatar
WenmuZhou committed
375
<a name="PREDICTION"></a>
376
## 4. Prediction
Khanh Tran's avatar
Khanh Tran committed
377
378
379
380


Using the model trained by paddleocr, you can quickly get prediction through the following script.

tink2123's avatar
tink2123 committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
Khanh Tran's avatar
Khanh Tran committed
402
403
404

```
# Predict English results
WenmuZhou's avatar
WenmuZhou committed
405
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
406
407
```

tink2123's avatar
tink2123 committed
408

Khanh Tran's avatar
Khanh Tran committed
409
410
Input image:

411
![](../imgs_words/en/word_1.png)
Khanh Tran's avatar
Khanh Tran committed
412
413
414
415
416

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
tink2123's avatar
tink2123 committed
417
        result: ('joint', 0.9998967)
Khanh Tran's avatar
Khanh Tran committed
418
419
```

xmy0916's avatar
xmy0916 committed
420
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
Khanh Tran's avatar
Khanh Tran committed
421
422
423

```
# Predict Chinese results
WenmuZhou's avatar
WenmuZhou committed
424
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
425
426
427
428
```

Input image:

429
![](../imgs_words/ch/word_1.jpg)
Khanh Tran's avatar
Khanh Tran committed
430
431
432
433
434

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
tink2123's avatar
tink2123 committed
435
        result: ('韩国小馆', 0.997218)
Khanh Tran's avatar
Khanh Tran committed
436
```
437
438
439

<a name="Inference"></a>

440
## 5. Convert to Inference Model
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470

The recognition model is converted to the inference model in the same way as the detection, as follows:

```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.

python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy  Global.save_inference_dir=./inference/rec_crnn/
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are three files in the model save directory:

```
inference/det_db/
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
```

- Text recognition model Inference using custom characters dictionary

  If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`, and set `rec_char_type=ch`

  ```
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_type="ch" --rec_char_dict_path="your text dict path"
  ```