recognition_en.md 19.5 KB
Newer Older
xxxpsyduck's avatar
xxxpsyduck committed
1
## TEXT RECOGNITION
Khanh Tran's avatar
Khanh Tran committed
2

WenmuZhou's avatar
WenmuZhou committed
3
4
5
6
7
- [1 DATA PREPARATION](#DATA_PREPARATION)
    - [1.1 Costom Dataset](#Costom_Dataset)
    - [1.2 Dataset Download](#Dataset_download)
    - [1.3 Dictionary](#Dictionary)  
    - [1.4 Add Space Category](#Add_space_category)
WenmuZhou's avatar
WenmuZhou committed
8

WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
- [2 TRAINING](#TRAINING)
    - [2.1 Data Augmentation](#Data_Augmentation)
    - [2.2 Training](#Training)
    - [2.3 Multi-language](#Multi_language)
WenmuZhou's avatar
WenmuZhou committed
13

WenmuZhou's avatar
WenmuZhou committed
14
- [3 EVALUATION](#EVALUATION)
WenmuZhou's avatar
WenmuZhou committed
15

WenmuZhou's avatar
WenmuZhou committed
16
17
- [4 PREDICTION](#PREDICTION)
    - [4.1 Training engine prediction](#Training_engine_prediction)
WenmuZhou's avatar
WenmuZhou committed
18
19

<a name="DATA_PREPARATION"></a>
xxxpsyduck's avatar
xxxpsyduck committed
20
### DATA PREPARATION
Khanh Tran's avatar
Khanh Tran committed
21
22


WenmuZhou's avatar
WenmuZhou committed
23
24
25
PaddleOCR supports two data formats:
- `LMDB` is used to train data sets stored in lmdb format;
- `general data` is used to train data sets stored in text files:
Khanh Tran's avatar
Khanh Tran committed
26
27
28
29
30
31

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
WenmuZhou's avatar
WenmuZhou committed
32
# linux and mac os
33
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
WenmuZhou's avatar
WenmuZhou committed
34
35
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
Khanh Tran's avatar
Khanh Tran committed
36
37
```

WenmuZhou's avatar
WenmuZhou committed
38
<a name="Costom_Dataset"></a>
WenmuZhou's avatar
WenmuZhou committed
39
#### 1.1 Costom dataset
Khanh Tran's avatar
Khanh Tran committed
40
41
42
43
44

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

WenmuZhou's avatar
WenmuZhou committed
45
It is recommended to put the training images in the same folder, and use a txt file (rec_gt_train.txt) to store the image path and label. The contents of the txt file are as follows:
Khanh Tran's avatar
Khanh Tran committed
46
47
48
49
50
51

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

WenmuZhou's avatar
WenmuZhou committed
52
53
54
train_data/train/word_001.jpg   简单可依赖
train_data/train/word_002.jpg   用科技让复杂的世界更简单
...
Khanh Tran's avatar
Khanh Tran committed
55
56
57
58
59
60
```

The final training set should have the following file structure:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
61
62
63
64
65
66
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
Khanh Tran's avatar
Khanh Tran committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
WenmuZhou's avatar
WenmuZhou committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

<a name="Dataset_download"></a>
#### 1.2 Dataset download

If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads). Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark

If you want to reproduce the paper indicators of SRN, you need to download offline [augmented data](https://pan.baidu.com/s/1-HSZ-ZVdqBF2HaBZ5pRAKA), extraction code: y3ry. The augmented data is obtained by rotation and perturbation of mjsynth and synthtext. Please unzip the data to {your_path}/PaddleOCR/train_data/data_lmdb_Release/training/path.

PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

WenmuZhou's avatar
WenmuZhou committed
100
<a name="Dictionary"></a>
WenmuZhou's avatar
WenmuZhou committed
101
#### 1.3 Dictionary
Khanh Tran's avatar
Khanh Tran committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

WenmuZhou's avatar
WenmuZhou committed
118
119
PaddleOCR has built-in dictionaries, which can be used on demand.

Khanh Tran's avatar
Khanh Tran committed
120
121
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

WenmuZhou's avatar
WenmuZhou committed
122
123
124
125
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

126
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
WenmuZhou's avatar
WenmuZhou committed
127

tink2123's avatar
tink2123 committed
128
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
WenmuZhou's avatar
WenmuZhou committed
129

tink2123's avatar
tink2123 committed
130
131
132
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

`ppocr/utils/dict/en_dict.txt` is a English dictionary with 63 characters
WenmuZhou's avatar
WenmuZhou committed
133

134

WenmuZhou's avatar
WenmuZhou committed
135
136
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) or corpus file to [corpus](../../ppocr/utils/corpus) and we will thank you in the Repo.
Khanh Tran's avatar
Khanh Tran committed
137
138
139
140


To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` and set `character_type` to `ch`.

tink2123's avatar
tink2123 committed
141
142
143
144
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

WenmuZhou's avatar
WenmuZhou committed
145
<a name="Add_space_category"></a>
WenmuZhou's avatar
WenmuZhou committed
146
#### 1.4 Add space category
tink2123's avatar
tink2123 committed
147

xmy0916's avatar
xmy0916 committed
148
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
tink2123's avatar
tink2123 committed
149
150
151

**Note: use_space_char only takes effect when character_type=ch**

WenmuZhou's avatar
WenmuZhou committed
152
<a name="TRAINING"></a>
WenmuZhou's avatar
WenmuZhou committed
153
### 2 TRAINING
Khanh Tran's avatar
Khanh Tran committed
154
155
156
157
158
159
160
161

PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
162
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
163
164
# Decompress model parameters
cd pretrain_models
tink2123's avatar
tink2123 committed
165
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
166
167
168
169
170
```

Start training:

```
xmy0916's avatar
xmy0916 committed
171
# GPU training Support single card and multi-card training, specify the card number through --gpus
tink2123's avatar
tink2123 committed
172
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
xmy0916's avatar
xmy0916 committed
173
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
Khanh Tran's avatar
Khanh Tran committed
174
```
WenmuZhou's avatar
WenmuZhou committed
175
<a name="Data_Augmentation"></a>
WenmuZhou's avatar
WenmuZhou committed
176
#### 2.1 Data Augmentation
tink2123's avatar
tink2123 committed
177
178
179
180
181
182
183

PaddleOCR provides a variety of data augmentation methods. If you want to add disturbance during training, please set `distort: true` in the configuration file.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse.

Each disturbance method is selected with a 50% probability during the training process. For specific code implementation, please refer to: [img_tools.py](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/ppocr/data/rec/img_tools.py)

WenmuZhou's avatar
WenmuZhou committed
184
<a name="Training"></a>
WenmuZhou's avatar
WenmuZhou committed
185
#### 2.2 Training
tink2123's avatar
tink2123 committed
186

Khanh Tran's avatar
Khanh Tran committed
187
188
189
190
191
192
193
194
195
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
xmy0916's avatar
xmy0916 committed
196
197
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
198
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
WenmuZhou's avatar
WenmuZhou committed
199
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
200
201
202
203
204
205
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |

WenmuZhou's avatar
WenmuZhou committed
206
For training Chinese data, it is recommended to use
xmy0916's avatar
xmy0916 committed
207
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
Khanh Tran's avatar
Khanh Tran committed
208
co
xmy0916's avatar
xmy0916 committed
209
Take `rec_chinese_lite_train_v2.0.yml` as an example:
Khanh Tran's avatar
Khanh Tran committed
210
211
212
```
Global:
  ...
xmy0916's avatar
xmy0916 committed
213
214
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
Khanh Tran's avatar
Khanh Tran committed
215
216
217
  # Modify character type
  character_type: ch
  ...
218
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
219
  use_space_char: True
Khanh Tran's avatar
Khanh Tran committed
220

221
222
223
224

Optimizer:
  ...
  # Add learning rate decay strategy
xmy0916's avatar
xmy0916 committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
    # Type of dataset,we support LMDBDateSet and SimpleDataSet
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
    # Type of dataset,we support LMDBDateSet and SimpleDataSet
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
Khanh Tran's avatar
Khanh Tran committed
270
271
272
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

WenmuZhou's avatar
WenmuZhou committed
273
<a name="Multi_language"></a>
WenmuZhou's avatar
WenmuZhou committed
274
#### 2.3 Multi-language
WenmuZhou's avatar
WenmuZhou committed
275

tink2123's avatar
tink2123 committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
PaddleOCR currently supports 26 (except Chinese) language recognition. A multi-language configuration file template is
provided under the path `configs/rec/multi_languages`: [rec_multi_language_lite_train.yml](../../configs/rec/multi_language/rec_multi_language_lite_train.yml)

There are two ways to create the required configuration file::

1. Automatically generated by script

[generate_multi_language_configs.py](../../configs/rec/multi_language/generate_multi_language_configs.py) Can help you generate configuration files for multi-language models

- Take Italian as an example, if your data is prepared in the following format:
    ```
    |-train_data
        |- it_train.txt # train_set label
        |- it_val.txt # val_set label
        |- data
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
    ```

    You can use the default parameters to generate a configuration file:

    ```bash
    # The code needs to be run in the specified directory
    cd PaddleOCR/configs/rec/multi_language/
    # Set the configuration file of the language to be generated through the -l or --language parameter.
    # This command will write the default parameters into the configuration file
    python3 generate_multi_language_configs.py -l it
    ```

- If your data is placed in another location, or you want to use your own dictionary, you can generate the configuration file by specifying the relevant parameters:

    ```bash
    # -l or --language field is required
    # --train to modify the training set
    # --val to modify the validation set
    # --data_dir to modify the data set directory
tink2123's avatar
tink2123 committed
314
    # --dict to modify the dict path
tink2123's avatar
tink2123 committed
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
    # -o to modify the corresponding default parameters
    cd PaddleOCR/configs/rec/multi_language/
    python3 generate_multi_language_configs.py -l it \  # language
    --train {path/of/train_label.txt} \ # path of train_label
    --val {path/of/val_label.txt} \     # path of val_label
    --data_dir {train_data/path} \      # root directory of training data
    --dict {path/of/dict} \             # path of dict
    -o Global.use_gpu=False             # whether to use gpu
    ...

    ```

2. Manually modify the configuration file

   You can also manually modify the following fields in the template:

   ```
    Global:
      use_gpu: True
      epoch_num: 500
      ...
      character_type: it  # language
      character_dict_path:  {path/of/dict} # path of dict

   Train:
      dataset:
        name: SimpleDataSet
        data_dir: train_data/ # root directory of training data
        label_file_list: ["./train_data/train_list.txt"] # train label path
      ...

   Eval:
      dataset:
        name: SimpleDataSet
        data_dir: train_data/ # root directory of val data
        label_file_list: ["./train_data/val_list.txt"] # val label path
      ...

   ```

Currently, the multi-language algorithms supported by PaddleOCR are:

tink2123's avatar
tink2123 committed
357
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language | character_type |
tink2123's avatar
tink2123 committed
358
359
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  | chinese_cht|
tink2123's avatar
tink2123 committed
360
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   | EN |
tink2123's avatar
tink2123 committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  french |
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   | german |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese | japan |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  | korean |
| rec_it_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Italian  | it |
| rec_xi_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Spanish |  xi |
| rec_pu_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Portuguese   | pu |
| rec_ru_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Russia  | ru |
| rec_ar_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Arabic  | ar |
| rec_hi_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Hindi |  hi |
| rec_ug_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Uyghur  | ug |
| rec_fa_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Persian(Farsi)  | fa |
| rec_ur_ite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Urdu  | ur |
| rec_rs_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Serbian(latin) | rs |
| rec_oc_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Occitan  | oc |
| rec_mr_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Marathi  | mr |
| rec_ne_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Nepali  | ne |
| rec_rsc_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Serbian(cyrillic) |  rsc |
| rec_bg_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Bulgarian  | bg |
| rec_uk_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Ukranian  | uk |
| rec_be_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Belarusian   | be |
| rec_te_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Telugu  | te |
| rec_ka_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Kannada  | ka |
| rec_ta_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Tamil |  ta |

WenmuZhou's avatar
WenmuZhou committed
386
387
388
389
390
391
392
393
394
395

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded on [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA),Extraction code:frgi.

If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
xmy0916's avatar
xmy0916 committed
396
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
WenmuZhou's avatar
WenmuZhou committed
397
398
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
xmy0916's avatar
xmy0916 committed
399
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
400
  use_space_char: True
xmy0916's avatar
xmy0916 committed
401

WenmuZhou's avatar
WenmuZhou committed
402
...
xmy0916's avatar
xmy0916 committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Train:
  dataset:
    # Type of dataset,we support LMDBDateSet and SimpleDataSet
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
    # Type of dataset,we support LMDBDateSet and SimpleDataSet
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
WenmuZhou's avatar
WenmuZhou committed
423
```
Khanh Tran's avatar
Khanh Tran committed
424

WenmuZhou's avatar
WenmuZhou committed
425
<a name="EVALUATION"></a>
WenmuZhou's avatar
WenmuZhou committed
426
### 3 EVALUATION
Khanh Tran's avatar
Khanh Tran committed
427

WenmuZhou's avatar
WenmuZhou committed
428
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
Khanh Tran's avatar
Khanh Tran committed
429
430
431

```
# GPU evaluation, Global.checkpoints is the weight to be tested
WenmuZhou's avatar
WenmuZhou committed
432
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
Khanh Tran's avatar
Khanh Tran committed
433
434
```

WenmuZhou's avatar
WenmuZhou committed
435
<a name="PREDICTION"></a>
WenmuZhou's avatar
WenmuZhou committed
436
### 4 PREDICTION
Khanh Tran's avatar
Khanh Tran committed
437

WenmuZhou's avatar
WenmuZhou committed
438
<a name="Training_engine_prediction"></a>
WenmuZhou's avatar
WenmuZhou committed
439
#### 4.1 Training engine prediction
Khanh Tran's avatar
Khanh Tran committed
440
441
442
443
444
445
446

Using the model trained by paddleocr, you can quickly get prediction through the following script.

The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:

```
# Predict English results
WenmuZhou's avatar
WenmuZhou committed
447
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
448
449
450
451
```

Input image:

452
![](../imgs_words/en/word_1.png)
Khanh Tran's avatar
Khanh Tran committed
453
454
455
456
457

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
tink2123's avatar
tink2123 committed
458
        result: ('joint', 0.9998967)
Khanh Tran's avatar
Khanh Tran committed
459
460
```

xmy0916's avatar
xmy0916 committed
461
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
Khanh Tran's avatar
Khanh Tran committed
462
463
464

```
# Predict Chinese results
WenmuZhou's avatar
WenmuZhou committed
465
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
466
467
468
469
```

Input image:

470
![](../imgs_words/ch/word_1.jpg)
Khanh Tran's avatar
Khanh Tran committed
471
472
473
474
475

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
tink2123's avatar
tink2123 committed
476
        result: ('韩国小馆', 0.997218)
Khanh Tran's avatar
Khanh Tran committed
477
```