recognition_en.md 25.3 KB
Newer Older
1
# Text Recognition
Khanh Tran's avatar
Khanh Tran committed
2

3
- [1. Data Preparation](#DATA_PREPARATION)
andyjpaddle's avatar
andyjpaddle committed
4
5
6
7
8
  * [1.1 Costom Dataset](#Costom_Dataset)
  * [1.2 Dataset Download](#Dataset_download)
  * [1.3 Dictionary](#Dictionary)  
  * [1.4 Add Space Category](#Add_space_category)
  * [1.5 Data Augmentation](#Data_Augmentation)
9
- [2. Training](#TRAINING)
andyjpaddle's avatar
andyjpaddle committed
10
11
12
13
14
15
16
17
18
19
20
21
22
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
  * [2.4 Mixed Precision Training](#24-amp-training)
  * [2.5 Distributed Training](#25-distributed-training)
  * [2.6 Training with knowledge distillation](#kd)
  * [2.7 Multi-language Training](#Multi_language)
  * [2.8 Training on other platform(Windows/macOS/Linux DCU)](#28)
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#5-faq)
WenmuZhou's avatar
WenmuZhou committed
23
24

<a name="DATA_PREPARATION"></a>
25
## 1. Data Preparation
Khanh Tran's avatar
Khanh Tran committed
26
27


WenmuZhou's avatar
WenmuZhou committed
28
PaddleOCR supports two data formats:
tink2123's avatar
tink2123 committed
29
30
- `LMDB` is used to train data sets stored in lmdb format(LMDBDataSet);
- `general data` is used to train data sets stored in text files(SimpleDataSet):
Khanh Tran's avatar
Khanh Tran committed
31
32
33
34
35
36

Please organize the dataset as follows:

The default storage path for training data is `PaddleOCR/train_data`, if you already have a dataset on your disk, just create a soft link to the dataset directory:

```
WenmuZhou's avatar
WenmuZhou committed
37
# linux and mac os
38
ln -sf <path/to/dataset> <path/to/paddle_ocr>/train_data/dataset
WenmuZhou's avatar
WenmuZhou committed
39
40
# windows
mklink /d <path/to/paddle_ocr>/train_data/dataset <path/to/dataset>
Khanh Tran's avatar
Khanh Tran committed
41
42
```

WenmuZhou's avatar
WenmuZhou committed
43
<a name="Costom_Dataset"></a>
44
### 1.1 Costom Dataset
Khanh Tran's avatar
Khanh Tran committed
45
46
47
48
49

If you want to use your own data for training, please refer to the following to organize your data.

- Training set

WenmuZhou's avatar
WenmuZhou committed
50
It is recommended to put the training images in the same folder, and use a txt file (rec_gt_train.txt) to store the image path and label. The contents of the txt file are as follows:
Khanh Tran's avatar
Khanh Tran committed
51
52
53
54
55
56

* Note: by default, the image path and image label are split with \t, if you use other methods to split, it will cause training error

```
" Image file name           Image annotation "

WenmuZhou's avatar
WenmuZhou committed
57
58
train_data/rec/train/word_001.jpg   简单可依赖
train_data/rec/train/word_002.jpg   用科技让复杂的世界更简单
WenmuZhou's avatar
WenmuZhou committed
59
...
Khanh Tran's avatar
Khanh Tran committed
60
61
62
63
64
65
```

The final training set should have the following file structure:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
66
  |-rec
WenmuZhou's avatar
WenmuZhou committed
67
68
69
70
71
72
    |- rec_gt_train.txt
    |- train
        |- word_001.png
        |- word_002.jpg
        |- word_003.jpg
        | ...
Khanh Tran's avatar
Khanh Tran committed
73
74
75
76
77
78
79
80
```

- Test set

Similar to the training set, the test set also needs to be provided a folder containing all images (test) and a rec_gt_test.txt. The structure of the test set is as follows:

```
|-train_data
WenmuZhou's avatar
WenmuZhou committed
81
  |-rec
Khanh Tran's avatar
Khanh Tran committed
82
83
84
85
86
87
88
89
    |-ic15_data
        |- rec_gt_test.txt
        |- test
            |- word_001.jpg
            |- word_002.jpg
            |- word_003.jpg
            | ...
```
WenmuZhou's avatar
WenmuZhou committed
90
91

<a name="Dataset_download"></a>
92
### 1.2 Dataset Download
WenmuZhou's avatar
WenmuZhou committed
93

tink2123's avatar
tink2123 committed
94
- ICDAR2015
WenmuZhou's avatar
WenmuZhou committed
95

tink2123's avatar
tink2123 committed
96
97
If you do not have a dataset locally, you can download it on the official website [icdar2015](http://rrc.cvc.uab.es/?ch=4&com=downloads).
Also refer to [DTRB](https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here) ,download the lmdb format dataset required for benchmark
WenmuZhou's avatar
WenmuZhou committed
98

99
100
If you want to reproduce the paper SAR, you need to download extra dataset [SynthAdd](https://pan.baidu.com/share/init?surl=uV0LtoNmcxbO-0YA7Ch4dg), extraction code: 627x. Besides, icdar2013, icdar2015, cocotext, IIIT5k datasets are also used to train. For specific details, please refer to the paper SAR.

WenmuZhou's avatar
WenmuZhou committed
101
102
103
104
105
106
107
108
109
PaddleOCR provides label files for training the icdar2015 dataset, which can be downloaded in the following ways:

```
# Training set label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# Test Set Label
wget -P ./train_data/ic15_data  https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
```

tink2123's avatar
tink2123 committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
PaddleOCR also provides a data format conversion script, which can convert ICDAR official website label to a data format
supported by PaddleOCR. The data conversion tool is in `ppocr/utils/gen_label.py`, here is the training set as an example:

```
# convert the official gt to rec_gt_label.txt
python gen_label.py --mode="rec" --input_path="{path/of/origin/label}" --output_label="rec_gt_label.txt"
```

The data format is as follows, (a) is the original picture, (b) is the Ground Truth text file corresponding to each picture:

![](../datasets/icdar_rec.png)


- Multilingual dataset

The multi-language model training method is the same as the Chinese model. The training data set is 100w synthetic data. A small amount of fonts and test data can be downloaded using the following two methods.
* [Baidu Netdisk](https://pan.baidu.com/s/1bS_u207Rm7YbY33wOECKDA) ,Extraction code:frgi.
* [Google drive](https://drive.google.com/file/d/18cSWX7wXSy4G0tbKJ0d9PuIaiwRLHpjA/view)


WenmuZhou's avatar
WenmuZhou committed
130
<a name="Dictionary"></a>
tink2123's avatar
tink2123 committed
131
### 1.3 Dictionary
Khanh Tran's avatar
Khanh Tran committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Finally, a dictionary ({word_dict_name}.txt) needs to be provided so that when the model is trained, all the characters that appear can be mapped to the dictionary index.

Therefore, the dictionary needs to contain all the characters that you want to be recognized correctly. {word_dict_name}.txt needs to be written in the following format and saved in the `utf-8` encoding format:

```
l
d
a
d
r
n
```

In `word_dict.txt`, there is a single word in each line, which maps characters and numeric indexes together, e.g "and" will be mapped to [2 5 1]

WenmuZhou's avatar
WenmuZhou committed
148
149
PaddleOCR has built-in dictionaries, which can be used on demand.

Khanh Tran's avatar
Khanh Tran committed
150
151
`ppocr/utils/ppocr_keys_v1.txt` is a Chinese dictionary with 6623 characters.

WenmuZhou's avatar
WenmuZhou committed
152
153
154
155
`ppocr/utils/ic15_dict.txt` is an English dictionary with 63 characters

`ppocr/utils/dict/french_dict.txt` is a French dictionary with 118 characters

156
`ppocr/utils/dict/japan_dict.txt` is a Japanese dictionary with 4399 characters
WenmuZhou's avatar
WenmuZhou committed
157

tink2123's avatar
tink2123 committed
158
`ppocr/utils/dict/korean_dict.txt` is a Korean dictionary with 3636 characters
WenmuZhou's avatar
WenmuZhou committed
159

tink2123's avatar
tink2123 committed
160
161
`ppocr/utils/dict/german_dict.txt` is a German dictionary with 131 characters

tink2123's avatar
tink2123 committed
162
`ppocr/utils/en_dict.txt` is a English dictionary with 96 characters
WenmuZhou's avatar
WenmuZhou committed
163

164

WenmuZhou's avatar
WenmuZhou committed
165
The current multi-language model is still in the demo stage and will continue to optimize the model and add languages. **You are very welcome to provide us with dictionaries and fonts in other languages**,
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
166
If you like, you can submit the dictionary file to [dict](../../ppocr/utils/dict) and we will thank you in the Repo.
Khanh Tran's avatar
Khanh Tran committed
167
168


tink2123's avatar
tink2123 committed
169
To customize the dict file, please modify the `character_dict_path` field in `configs/rec/rec_icdar15_train.yml` .
Khanh Tran's avatar
Khanh Tran committed
170

tink2123's avatar
tink2123 committed
171
172
173
174
- Custom dictionary

If you need to customize dic file, please add character_dict_path field in configs/rec/rec_icdar15_train.yml to point to your dictionary path. And set character_type to ch.

WenmuZhou's avatar
WenmuZhou committed
175
<a name="Add_space_category"></a>
176
### 1.4 Add Space Category
tink2123's avatar
tink2123 committed
177

xmy0916's avatar
xmy0916 committed
178
If you want to support the recognition of the `space` category, please set the `use_space_char` field in the yml file to `True`.
tink2123's avatar
tink2123 committed
179

tink2123's avatar
tink2123 committed
180
<a name="Data_Augmentation"></a>
andyjpaddle's avatar
andyjpaddle committed
181
### 1.5 Data Augmentation
tink2123's avatar
tink2123 committed
182
183
184
185
186
187
188

PaddleOCR provides a variety of data augmentation methods. All the augmentation methods are enabled by default.

The default perturbation methods are: cvtColor, blur, jitter, Gasuss noise, random crop, perspective, color reverse, TIA augmentation.

Each disturbance method is selected with a 40% probability during the training process. For specific code implementation, please refer to: [rec_img_aug.py](../../ppocr/data/imaug/rec_img_aug.py)

andyjpaddle's avatar
andyjpaddle committed
189
190
<a name="TRAINING"></a>
## 2.Training
tink2123's avatar
tink2123 committed
191

Khanh Tran's avatar
Khanh Tran committed
192
193
PaddleOCR provides training scripts, evaluation scripts, and prediction scripts. In this section, the CRNN recognition model will be used as an example:

andyjpaddle's avatar
andyjpaddle committed
194
195
196
<a name="21-start-training"></a>
### 2.1 Start Training

Khanh Tran's avatar
Khanh Tran committed
197
198
199
200
201
First download the pretrain model, you can download the trained model to finetune on the icdar2015 data:

```
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
202
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
203
204
# Decompress model parameters
cd pretrain_models
tink2123's avatar
tink2123 committed
205
tar -xf rec_mv3_none_bilstm_ctc_v2.0_train.tar && rm -rf rec_mv3_none_bilstm_ctc_v2.0_train.tar
Khanh Tran's avatar
Khanh Tran committed
206
207
208
209
210
```

Start training:

```
tink2123's avatar
tink2123 committed
211
# GPU training Support single card and multi-card training
tink2123's avatar
tink2123 committed
212
# Training icdar15 English data and The training log will be automatically saved as train.log under "{save_model_dir}"
tink2123's avatar
tink2123 committed
213
214
215
216

#specify the single card training(Long training time, not recommended)
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml
#specify the card number through --gpus
xmy0916's avatar
xmy0916 committed
217
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/rec/rec_icdar15_train.yml
Khanh Tran's avatar
Khanh Tran committed
218
```
tink2123's avatar
tink2123 committed
219
220


Khanh Tran's avatar
Khanh Tran committed
221
222
223
224
225
226
227
228
229
PaddleOCR supports alternating training and evaluation. You can modify `eval_batch_step` in `configs/rec/rec_icdar15_train.yml` to set the evaluation frequency. By default, it is evaluated every 500 iter and the best acc model is saved under `output/rec_CRNN/best_accuracy` during the evaluation process.

If the evaluation set is large, the test will be time-consuming. It is recommended to reduce the number of evaluations, or evaluate after training.

* Tip: You can use the `-c` parameter to select multiple model configurations under the `configs/rec/` path for training. The recognition algorithms supported by PaddleOCR are:


| Configuration file |  Algorithm |   backbone |   trans   |   seq      |     pred     |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   |
xmy0916's avatar
xmy0916 committed
230
231
| [rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml) |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
| [rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml) |  CRNN | ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
232
| rec_chinese_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  |
WenmuZhou's avatar
WenmuZhou committed
233
| rec_chinese_common_train.yml |  CRNN |   ResNet34_vd |  None   |  BiLSTM |  ctc  |
Khanh Tran's avatar
Khanh Tran committed
234
235
236
237
238
| rec_icdar15_train.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_bilstm_ctc.yml |  CRNN |   Mobilenet_v3 large 0.5 |  None   |  BiLSTM |  ctc  |
| rec_mv3_none_none_ctc.yml |  Rosetta |   Mobilenet_v3 large 0.5 |  None   |  None |  ctc  |
| rec_r34_vd_none_bilstm_ctc.yml |  CRNN |   Resnet34_vd |  None   |  BiLSTM |  ctc  |
| rec_r34_vd_none_none_ctc.yml |  Rosetta |   Resnet34_vd |  None   |  None |  ctc  |
LDOUBLEV's avatar
LDOUBLEV committed
239
240
| rec_mv3_tps_bilstm_att.yml |  CRNN |   Mobilenet_v3 |  TPS   |  BiLSTM |  att  |
| rec_r34_vd_tps_bilstm_att.yml |  CRNN |   Resnet34_vd |  TPS   |  BiLSTM |  att  |
tink2123's avatar
tink2123 committed
241
| rec_r50fpn_vd_none_srn.yml    | SRN | Resnet50_fpn_vd    | None    | rnn | srn |
Topdu's avatar
Topdu committed
242
| rec_mtb_nrtr.yml    | NRTR | nrtr_mtb    | None    | transformer encoder | transformer decoder |
andyjpaddle's avatar
andyjpaddle committed
243
| rec_r31_sar.yml               | SAR | ResNet31 | None | LSTM encoder | LSTM decoder |
Khanh Tran's avatar
Khanh Tran committed
244
245


WenmuZhou's avatar
WenmuZhou committed
246
For training Chinese data, it is recommended to use
xmy0916's avatar
xmy0916 committed
247
[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml). If you want to try the result of other algorithms on the Chinese data set, please refer to the following instructions to modify the configuration file:
Khanh Tran's avatar
Khanh Tran committed
248
co
xmy0916's avatar
xmy0916 committed
249
Take `rec_chinese_lite_train_v2.0.yml` as an example:
Khanh Tran's avatar
Khanh Tran committed
250
251
252
```
Global:
  ...
xmy0916's avatar
xmy0916 committed
253
254
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
Khanh Tran's avatar
Khanh Tran committed
255
256
  # Modify character type
  ...
257
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
258
  use_space_char: True
Khanh Tran's avatar
Khanh Tran committed
259

260
261
262
263

Optimizer:
  ...
  # Add learning rate decay strategy
xmy0916's avatar
xmy0916 committed
264
265
266
267
268
269
270
271
272
  lr:
    name: Cosine
    learning_rate: 0.001
  ...

...

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
273
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/train_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    ...
    # Train batch_size for Single card
    batch_size_per_card: 256
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
293
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/val_list.txt"]
    transforms:
      ...
      - RecResizeImg:
          # Modify image_shape to fit long text
          image_shape: [3, 32, 320]
      ...
  loader:
    # Eval batch_size for Single card
    batch_size_per_card: 256
    ...
Khanh Tran's avatar
Khanh Tran committed
309
310
311
```
**Note that the configuration file for prediction/evaluation must be consistent with the training.**

andyjpaddle's avatar
andyjpaddle committed
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
<a name="22-load-trained-model-and-continue-training"></a>
### 2.2 Load Trained Model and Continue Training

If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.

For example:
```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints=./your/trained/model
```

**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.

<a name="23-training-with-new-backbone"></a>
### 2.3 Training with New Backbone

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

<a name="24-amp-training"></a>
### 2.4 Mixed Precision Training

If you want to speed up your training further, you can use [Auto Mixed Precision Training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_cn.html), taking a single machine and a single gpu as an example, the commands are as follows:

```shell
python3 tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
 ```

<a name="25-distributed-training"></a>
### 2.5 Distributed Training

During multi-machine multi-gpu training, use the `--ips` parameter to set the used machine IP address, and the `--gpus` parameter to set the used GPU ID:

```bash
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_icdar15_train.yml \
     -o Global.pretrained_model=./pretrain_models/rec_mv3_none_bilstm_ctc_v2.0_train
```

**Note:** When using multi-machine and multi-gpu training, you need to replace the ips value in the above command with the address of your machine, and the machines need to be able to ping each other. In addition, training needs to be launched separately on multiple machines. The command to view the ip address of the machine is `ifconfig`.

<a name="kd"></a>
### 2.6 Training with Knowledge Distillation

Knowledge distillation is supported in PaddleOCR for text recognition training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

WenmuZhou's avatar
WenmuZhou committed
403
<a name="Multi_language"></a>
andyjpaddle's avatar
andyjpaddle committed
404
### 2.7 Multi-language Training
tink2123's avatar
tink2123 committed
405
406
407

Currently, the multi-language algorithms supported by PaddleOCR are:

tink2123's avatar
tink2123 committed
408
409
410
411
412
413
414
415
416
417
418
419
| Configuration file |  Algorithm name |   backbone |   trans   |   seq      |     pred     |  language |
| :--------: |  :-------:   | :-------:  |   :-------:   |   :-----:   |  :-----:   | :-----:  |
| rec_chinese_cht_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | chinese traditional  |
| rec_en_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | English(Case sensitive)   |
| rec_french_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | French |  
| rec_ger_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | German   |
| rec_japan_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Japanese |
| rec_korean_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Korean  |
| rec_latin_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | Latin  |
| rec_arabic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | arabic |
| rec_cyrillic_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | cyrillic   |
| rec_devanagari_lite_train.yml |  CRNN |   Mobilenet_v3 small 0.5 |  None   |  BiLSTM |  ctc  | devanagari  |
tink2123's avatar
tink2123 committed
420

tink2123's avatar
tink2123 committed
421
For more supported languages, please refer to : [Multi-language model](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_en/multi_languages_en.md#4-support-languages-and-abbreviations)
WenmuZhou's avatar
WenmuZhou committed
422
423
424
425
426
427
428
429
430


If you want to finetune on the basis of the existing model effect, please refer to the following instructions to modify the configuration file:

Take `rec_french_lite_train` as an example:

```
Global:
  ...
xmy0916's avatar
xmy0916 committed
431
  # Add a custom dictionary, such as modify the dictionary, please point the path to the new dictionary
WenmuZhou's avatar
WenmuZhou committed
432
433
  character_dict_path: ./ppocr/utils/dict/french_dict.txt
  ...
xmy0916's avatar
xmy0916 committed
434
  # Whether to recognize spaces
xmy0916's avatar
xmy0916 committed
435
  use_space_char: True
xmy0916's avatar
xmy0916 committed
436

WenmuZhou's avatar
WenmuZhou committed
437
...
xmy0916's avatar
xmy0916 committed
438
439
440

Train:
  dataset:
MissPenguin's avatar
MissPenguin committed
441
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
442
443
444
445
446
447
448
449
450
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data/
    # Path of train list
    label_file_list: ["./train_data/french_train.txt"]
    ...

Eval:
  dataset:
MissPenguin's avatar
MissPenguin committed
451
    # Type of dataset,we support LMDBDataSet and SimpleDataSet
xmy0916's avatar
xmy0916 committed
452
453
454
455
456
457
    name: SimpleDataSet
    # Path of dataset
    data_dir: ./train_data
    # Path of eval list
    label_file_list: ["./train_data/french_val.txt"]
    ...
WenmuZhou's avatar
WenmuZhou committed
458
```
Khanh Tran's avatar
Khanh Tran committed
459

andyjpaddle's avatar
andyjpaddle committed
460
461
<a name="28"></a>
### 2.8 Training on other platform(Windows/macOS/Linux DCU
462

andyjpaddle's avatar
andyjpaddle committed
463
464
465
466
- Windows GPU/CPU
The Windows platform is slightly different from the Linux platform:
Windows platform only supports `single gpu` training and inference, specify GPU for training `set CUDA_VISIBLE_DEVICES=0`
On the Windows platform, DataLoader only supports single-process mode, so you need to set `num_workers` to 0;
467

andyjpaddle's avatar
andyjpaddle committed
468
469
- macOS
GPU mode is not supported, you need to set `use_gpu` to False in the configuration file, and the rest of the training evaluation prediction commands are exactly the same as Linux GPU.
470

andyjpaddle's avatar
andyjpaddle committed
471
472
- Linux DCU
Running on a DCU device requires setting the environment variable `export HIP_VISIBLE_DEVICES=0,1,2,3`, and the rest of the training and evaluation prediction commands are exactly the same as the Linux GPU.
473

andyjpaddle's avatar
andyjpaddle committed
474
475
<a name="3-evaluation-and-test"></a>
## 3. Evaluation and Test
Khanh Tran's avatar
Khanh Tran committed
476

andyjpaddle's avatar
andyjpaddle committed
477
478
479
480
<a name="31-evaluation"></a>
### 3.1 Evaluation

The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file. The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
Khanh Tran's avatar
Khanh Tran committed
481
482
483

```
# GPU evaluation, Global.checkpoints is the weight to be tested
WenmuZhou's avatar
WenmuZhou committed
484
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
Khanh Tran's avatar
Khanh Tran committed
485
486
```

andyjpaddle's avatar
andyjpaddle committed
487
488
<a name="32-test"></a>
### 3.2 Test
Khanh Tran's avatar
Khanh Tran committed
489
490
491
492


Using the model trained by paddleocr, you can quickly get prediction through the following script.

tink2123's avatar
tink2123 committed
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
The default prediction picture is stored in `infer_img`, and the trained weight is specified via `-o Global.checkpoints`:


According to the `save_model_dir` and `save_epoch_step` fields set in the configuration file, the following parameters will be saved:

```
output/rec/
├── best_accuracy.pdopt  
├── best_accuracy.pdparams  
├── best_accuracy.states  
├── config.yml  
├── iter_epoch_3.pdopt  
├── iter_epoch_3.pdparams  
├── iter_epoch_3.states  
├── latest.pdopt  
├── latest.pdparams  
├── latest.states  
└── train.log
```

Among them, best_accuracy.* is the best model on the evaluation set; iter_epoch_x.* is the model saved at intervals of `save_epoch_step`; latest.* is the model of the last epoch.
Khanh Tran's avatar
Khanh Tran committed
514
515
516

```
# Predict English results
WenmuZhou's avatar
WenmuZhou committed
517
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
518
519
```

tink2123's avatar
tink2123 committed
520

Khanh Tran's avatar
Khanh Tran committed
521
522
Input image:

523
![](../imgs_words/en/word_1.png)
Khanh Tran's avatar
Khanh Tran committed
524
525
526
527
528

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/en/word_1.png
tink2123's avatar
tink2123 committed
529
        result: ('joint', 0.9998967)
Khanh Tran's avatar
Khanh Tran committed
530
531
```

xmy0916's avatar
xmy0916 committed
532
The configuration file used for prediction must be consistent with the training. For example, you completed the training of the Chinese model with `python3 tools/train.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml`, you can use the following command to predict the Chinese model:
Khanh Tran's avatar
Khanh Tran committed
533
534
535

```
# Predict Chinese results
WenmuZhou's avatar
WenmuZhou committed
536
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
Khanh Tran's avatar
Khanh Tran committed
537
538
539
540
```

Input image:

541
![](../imgs_words/ch/word_1.jpg)
Khanh Tran's avatar
Khanh Tran committed
542
543
544
545
546

Get the prediction result of the input image:

```
infer_img: doc/imgs_words/ch/word_1.jpg
tink2123's avatar
tink2123 committed
547
        result: ('韩国小馆', 0.997218)
Khanh Tran's avatar
Khanh Tran committed
548
```
549

andyjpaddle's avatar
andyjpaddle committed
550
551
552
553
554
555
<a name="4-inference"></a>
## 4. Inference

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.
556

andyjpaddle's avatar
andyjpaddle committed
557
Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574

The recognition model is converted to the inference model in the same way as the detection, as follows:

```
# -c Set the training algorithm yml configuration file
# -o Set optional parameters
# Global.pretrained_model parameter Set the training model address to be converted without adding the file suffix .pdmodel, .pdopt or .pdparams.
# Global.save_inference_dir Set the address where the converted model will be saved.

python3 tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./ch_lite/ch_ppocr_mobile_v2.0_rec_train/best_accuracy  Global.save_inference_dir=./inference/rec_crnn/
```

If you have a model trained on your own dataset with a different dictionary file, please make sure that you modify the `character_dict_path` in the configuration file to your dictionary file path.

After the conversion is successful, there are three files in the model save directory:

```
andyjpaddle's avatar
andyjpaddle committed
575
inference/rec_crnn/
576
577
578
579
580
581
582
    ├── inference.pdiparams         # The parameter file of recognition inference model
    ├── inference.pdiparams.info    # The parameter information of recognition inference model, which can be ignored
    └── inference.pdmodel           # The program file of recognition model
```

- Text recognition model Inference using custom characters dictionary

WenmuZhou's avatar
WenmuZhou committed
583
  If the text dictionary is modified during training, when using the inference model to predict, you need to specify the dictionary path used by `--rec_char_dict_path`
584
585

  ```
WenmuZhou's avatar
WenmuZhou committed
586
  python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./your inference model" --rec_image_shape="3, 32, 100" --rec_char_dict_path="your text dict path"
587
  ```
andyjpaddle's avatar
andyjpaddle committed
588
589
590
591
592
593
594

<a name="5-faq"></a>
## 5. FAQ

Q1: After the training model is transferred to the inference model, the prediction effect is inconsistent?

**A**: There are many such problems, and the problems are mostly caused by inconsistent preprocessing and postprocessing parameters when the trained model predicts and the preprocessing and postprocessing parameters when the inference model predicts. You can compare whether there are differences in preprocessing, postprocessing, and prediction in the configuration files used for training.