distillation_loss.py 9.24 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
17
18
import numpy as np
import cv2
littletomatodonkey's avatar
littletomatodonkey committed
19
20
21

from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
22
from .basic_loss import DistanceLoss
LDOUBLEV's avatar
LDOUBLEV committed
23
24
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey committed
25
26


LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

LDOUBLEV's avatar
LDOUBLEV committed
39
40

class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey committed
41
42
43
    """
    """

LDOUBLEV's avatar
LDOUBLEV committed
44
45
46
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
47
                 use_log=False,
LDOUBLEV's avatar
LDOUBLEV committed
48
49
                 key=None,
                 maps_name=None,
LDOUBLEV's avatar
LDOUBLEV committed
50
                 name="dml"):
51
        super().__init__(act=act, use_log=use_log)
52
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey committed
53
        self.key = key
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
54
        self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
littletomatodonkey's avatar
littletomatodonkey committed
55
        self.name = name
LDOUBLEV's avatar
LDOUBLEV committed
56
        self.maps_name = self._check_maps_name(maps_name)
57

LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
58
59
60
    def _check_model_name_pairs(self, model_name_pairs):
        if not isinstance(model_name_pairs, list):
            return []
61
62
        elif isinstance(model_name_pairs[0], list) and isinstance(
                model_name_pairs[0][0], str):
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
63
64
65
            return model_name_pairs
        else:
            return [model_name_pairs]
LDOUBLEV's avatar
LDOUBLEV committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
LDOUBLEV's avatar
LDOUBLEV committed
81
                new_outs[k] = outs[:, 0, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
82
            elif k == "threshold_maps":
LDOUBLEV's avatar
LDOUBLEV committed
83
                new_outs[k] = outs[:, 1, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
84
            elif k == "binary_maps":
LDOUBLEV's avatar
LDOUBLEV committed
85
                new_outs[k] = outs[:, 2, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
86
87
            else:
                continue
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
88
        return new_outs
littletomatodonkey's avatar
littletomatodonkey committed
89
90
91

    def forward(self, predicts, batch):
        loss_dict = dict()
92
93
94
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey committed
95
96
97
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
LDOUBLEV's avatar
LDOUBLEV committed
98
99
100
101
102
103
104
105
106

            if self.maps_name is None:
                loss = super().forward(out1, out2)
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
107
            else:
LDOUBLEV's avatar
LDOUBLEV committed
108
109
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
LDOUBLEV's avatar
LDOUBLEV committed
110
                for _c, k in enumerate(outs1.keys()):
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
115
116
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
                                0], pair[1], map_name, idx)] = loss[key]
                    else:
117
118
119
                        loss_dict["{}_{}_{}".format(self.name, self.maps_name[
                            _c], idx)] = loss

LDOUBLEV's avatar
LDOUBLEV committed
120
121
        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey committed
122
123
124
125
126
127
128
129
130
131
132
133
        return loss_dict


class DistillationCTCLoss(CTCLoss):
    def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
134
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey committed
135
136
137
138
139
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            if isinstance(loss, dict):
140
141
142
143
144
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey committed
145
        return loss_dict
146
147


LDOUBLEV's avatar
LDOUBLEV committed
148
149
150
151
152
153
154
155
156
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
LDOUBLEV's avatar
LDOUBLEV committed
157
                 name="db",
LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
161
162
163
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name
        self.key = None

LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
164
    def forward(self, predicts, batch):
LDOUBLEV's avatar
LDOUBLEV committed
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
        loss_dict = {}
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    name = "{}_{}_{}".format(self.name, model_name, key)
                    loss_dict[name] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self,
                 model_name_pairs=[],
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
188
                 key=None,
LDOUBLEV's avatar
LDOUBLEV committed
189
190
191
192
193
194
195
196
197
198
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
199
        self.key = key
LDOUBLEV's avatar
LDOUBLEV committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]

            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1, 1], [1, 1]])
            th_shrink_maps = tch_preds[:, 0, :, :]
            th_shrink_maps = th_shrink_maps.numpy() > 0.3  # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(
                    th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
                1:]

            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(
                stu_shrink_maps, th_shrink_maps, label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                              label_shrink_mask)

            # k = f"{self.name}_{pair[0]}_{pair[1]}"
            k = "{}_{}_{}".format(self.name, pair[0], pair[1])
            loss_dict[k] = bce_loss + loss_binary_maps

        loss_dict = _sum_loss(loss_dict)
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
237
        return loss_dict
LDOUBLEV's avatar
LDOUBLEV committed
238
239


240
241
242
243
244
245
246
247
248
249
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey committed
250
        super().__init__(mode=mode, **kargs)
251
252
253
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey committed
254
        self.name = name + "_l2"
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey committed
270
271
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
272
        return loss_dict