distillation_loss.py 8.69 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn

from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
20
from .basic_loss import DistanceLoss
LDOUBLEV's avatar
LDOUBLEV committed
21
22
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey committed
23
24


LDOUBLEV's avatar
LDOUBLEV committed
25
26
27
28
29
30
31
32
33
34
35
36
37
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

# class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey committed
38
39
40
    """
    """

LDOUBLEV's avatar
LDOUBLEV committed
41
42
43
44
45
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
                 key=None,
                 maps_name=None,
littletomatodonkey's avatar
littletomatodonkey committed
46
                 name="loss_dml"):
littletomatodonkey's avatar
littletomatodonkey committed
47
        super().__init__(act=act)
48
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey committed
49
        self.key = key
50
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey committed
51
        self.name = name
LDOUBLEV's avatar
LDOUBLEV committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        self.maps_name = self.maps_name

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
                new_outs[k] = paddle.slice(outs, axes=1, starts=0, ends=1)
            elif k == "threshold_maps":
                new_outs[k] = paddle.slice(outs, axes=1, starts=1, ends=2)
            elif k == "binary_maps":
                new_outs[k] = paddle.slice(outs, axes=1, starts=2, ends=3)
            else:
                continue
littletomatodonkey's avatar
littletomatodonkey committed
75
76
77

    def forward(self, predicts, batch):
        loss_dict = dict()
78
79
80
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey committed
81
82
83
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
LDOUBLEV's avatar
LDOUBLEV committed
84
85
86
87
88
89
90
91
92

            if self.maps_name is None:
                loss = super().forward(out1, out2)
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
93
            else:
LDOUBLEV's avatar
LDOUBLEV committed
94
95
96
97
98
99
100
101
102
103
104
105
106
107
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
                for k in outs1.keys():
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
                                0], pair[1], map_name, idx)] = loss[key]
                    else:
                        loss_dict["{}_{}_{}".format(self.name, map_name,
                                                    idx)] = loss

        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey committed
108
109
110
111
112
113
114
115
116
117
118
119
        return loss_dict


class DistillationCTCLoss(CTCLoss):
    def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
120
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey committed
121
122
123
124
125
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            if isinstance(loss, dict):
126
127
128
129
130
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey committed
131
        return loss_dict
132
133


LDOUBLEV's avatar
LDOUBLEV committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
"""
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="db_loss",
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]

            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    loss_dict[f"{self.name}_{model_name}_{key}"] = loss[key]
            else:
                loss_dict[f"{self.name}_{model_name}"] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self, model_name_pairs=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]
            
            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1,1], [1,1]])
            th_shrink_maps = tch_preds[:, 0, :, :] 
            th_shrink_maps = th_shrink_maps.numpy() > 0.3 # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[1:]
            
            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(stu_shrink_maps, th_shrink_maps,
                                         label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                            label_shrink_mask)
            
            k = f"{self.name}_{pair[0]}_{pair[1]}"
            loss_dict[k] = bce_loss + loss_binary_maps
        
        loss_dict = _sum_loss(loss_dict)
        return loss
"""


221
222
223
224
225
226
227
228
229
230
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey committed
231
        super().__init__(mode=mode, **kargs)
232
233
234
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey committed
235
        self.name = name + "_l2"
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey committed
251
252
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
253
        return loss_dict