"docs/en/faq/index.md" did not exist on "7bf082a1e8a39dfc11c9b9bbf31980fde42d3ecf"
distillation_loss.py 9.27 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
17
18
import numpy as np
import cv2
littletomatodonkey's avatar
littletomatodonkey committed
19
20
21

from .rec_ctc_loss import CTCLoss
from .basic_loss import DMLLoss
22
from .basic_loss import DistanceLoss
LDOUBLEV's avatar
LDOUBLEV committed
23
24
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey committed
25
26


LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

LDOUBLEV's avatar
LDOUBLEV committed
39
40

class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey committed
41
42
43
    """
    """

LDOUBLEV's avatar
LDOUBLEV committed
44
45
46
47
48
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
                 key=None,
                 maps_name=None,
littletomatodonkey's avatar
littletomatodonkey committed
49
                 name="loss_dml"):
littletomatodonkey's avatar
littletomatodonkey committed
50
        super().__init__(act=act)
51
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey committed
52
        self.key = key
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
53
        self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
littletomatodonkey's avatar
littletomatodonkey committed
54
        self.name = name
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
55
        self.maps_name = maps_name
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
56
57
58
59
60
61
62
63
    
    def _check_model_name_pairs(self, model_name_pairs):
        if not isinstance(model_name_pairs, list):
            return []
        elif isinstance(model_name_pairs[0], list) and isinstance(model_name_pairs[0][0], str):
            return model_name_pairs
        else:
            return [model_name_pairs]
LDOUBLEV's avatar
LDOUBLEV committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
79
                new_outs[k] = paddle.slice(outs, axes=[1], starts=[0], ends=[1])
LDOUBLEV's avatar
LDOUBLEV committed
80
            elif k == "threshold_maps":
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
81
                new_outs[k] = paddle.slice(outs, axes=[1], starts=[1], ends=[2])
LDOUBLEV's avatar
LDOUBLEV committed
82
            elif k == "binary_maps":
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
83
                new_outs[k] = paddle.slice(outs, axes=[1], starts=[2], ends=[3])
LDOUBLEV's avatar
LDOUBLEV committed
84
85
            else:
                continue
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
86
        return new_outs
littletomatodonkey's avatar
littletomatodonkey committed
87
88
89

    def forward(self, predicts, batch):
        loss_dict = dict()
90
91
92
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey committed
93
94
95
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
LDOUBLEV's avatar
LDOUBLEV committed
96
97
98
99
100
101
102
103
104

            if self.maps_name is None:
                loss = super().forward(out1, out2)
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
105
            else:
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
111
112
113
114
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
                for k in outs1.keys():
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
                                0], pair[1], map_name, idx)] = loss[key]
                    else:
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
115
                        loss_dict["{}_{}_{}".format(self.name, self.maps_name,
LDOUBLEV's avatar
LDOUBLEV committed
116
117
118
119
                                                    idx)] = loss

        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey committed
120
121
122
123
124
125
126
127
128
129
130
131
        return loss_dict


class DistillationCTCLoss(CTCLoss):
    def __init__(self, model_name_list=[], key=None, name="loss_ctc"):
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name

    def forward(self, predicts, batch):
        loss_dict = dict()
132
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey committed
133
134
135
136
137
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)
            if isinstance(loss, dict):
138
139
140
141
142
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey committed
143
        return loss_dict
144
145


LDOUBLEV's avatar
LDOUBLEV committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="db_loss",
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name
        self.key = None

LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
162
    def forward(self, predicts, batch):
LDOUBLEV's avatar
LDOUBLEV committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        loss_dict = {}
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    name = "{}_{}_{}".format(self.name, model_name, key)
                    loss_dict[name] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self,
                 model_name_pairs=[],
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
186
                 key=None,
LDOUBLEV's avatar
LDOUBLEV committed
187
188
189
190
191
192
193
194
195
196
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
197
        self.key = key
LDOUBLEV's avatar
LDOUBLEV committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]

            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1, 1], [1, 1]])
            th_shrink_maps = tch_preds[:, 0, :, :]
            th_shrink_maps = th_shrink_maps.numpy() > 0.3  # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(
                    th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
                1:]

            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(
                stu_shrink_maps, th_shrink_maps, label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                              label_shrink_mask)

            # k = f"{self.name}_{pair[0]}_{pair[1]}"
            k = "{}_{}_{}".format(self.name, pair[0], pair[1])
            loss_dict[k] = bce_loss + loss_binary_maps

        loss_dict = _sum_loss(loss_dict)
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
235
        return loss_dict
LDOUBLEV's avatar
LDOUBLEV committed
236
237


238
239
240
241
242
243
244
245
246
247
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey committed
248
        super().__init__(mode=mode, **kargs)
249
250
251
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey committed
252
        self.name = name + "_l2"
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey committed
268
269
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
270
        return loss_dict