README.md 13.2 KB
Newer Older
1
2
[English](README_en.md) | 简体中文

dyning's avatar
dyning committed
3
## 简介
tink2123's avatar
tink2123 committed
4
5
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

tink2123's avatar
tink2123 committed
6
**近期更新**
7
- 2020.6.8 添加[数据集](./doc/doc_ch/datasets.md),并保持持续更新
tink2123's avatar
tink2123 committed
8
9
10
- 2020.6.5 支持 `attetnion` 模型导出 `inference_model`
- 2020.6.5 支持单独预测识别时,输出结果得分
- 2020.5.30 提供超轻量级中文OCR在线体验
tink2123's avatar
tink2123 committed
11
- 2020.5.30 模型预测、训练支持Windows系统
12
- [more](./doc/doc_ch/update.md)
dyning's avatar
dyning committed
13

dyning's avatar
dyning committed
14
## 特性
dyning's avatar
dyning committed
15
16
17
- 超轻量级中文OCR,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
dyning's avatar
dyning committed
18
19
20
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE

dyning's avatar
dyning committed
21
22
23
24
25
26
### 支持的中文模型列表:

|模型名称|模型简介|检测模型地址|识别模型地址|
|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
27

dyning's avatar
dyning committed
28
超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
LDOUBLEV's avatar
LDOUBLEV committed
29

dyning's avatar
dyning committed
30
**也可以按如下教程快速体验超轻量级中文OCR和通用中文OCR模型。**
LDOUBLEV's avatar
LDOUBLEV committed
31

dyning's avatar
dyning committed
32
## **超轻量级中文OCR以及通用中文OCR体验**
tink2123's avatar
tink2123 committed
33

LDOUBLEV's avatar
LDOUBLEV committed
34
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
35

dyning's avatar
dyning committed
36
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[超轻量级中文OCR效果展示](#超轻量级中文OCR效果展示)[通用中文OCR效果展示](#通用中文OCR效果展示)
dyning's avatar
dyning committed
37

dyning's avatar
dyning committed
38
#### 1.环境配置
LDOUBLEV's avatar
LDOUBLEV committed
39

40
请先参考[快速安装](./doc/doc_ch/installation.md)配置PaddleOCR运行环境。
tink2123's avatar
tink2123 committed
41

dyning's avatar
dyning committed
42
#### 2.inference模型下载
LDOUBLEV's avatar
LDOUBLEV committed
43

tink2123's avatar
tink2123 committed
44
45
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*

tink2123's avatar
tink2123 committed
46

dyning's avatar
dyning committed
47
#### (1)超轻量级中文OCR模型下载
tink2123's avatar
tink2123 committed
48
```
LDOUBLEV's avatar
LDOUBLEV committed
49
mkdir inference && cd inference
dyning's avatar
dyning committed
50
# 下载超轻量级中文OCR模型的检测模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
51
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
dyning's avatar
dyning committed
52
# 下载超轻量级中文OCR模型的识别模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
53
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
dyning's avatar
dyning committed
54
55
56
57
58
59
60
61
62
63
cd ..
```
#### (2)通用中文OCR模型下载
```
mkdir inference && cd inference
# 下载通用中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
# 下载通用中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
cd ..
tink2123's avatar
tink2123 committed
64
65
```

dyning's avatar
dyning committed
66
67
#### 3.单张图像或者图像集合预测

dyning's avatar
dyning committed
68
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
dyning's avatar
dyning committed
69

70
```bash
tink2123's avatar
revert  
tink2123 committed
71

dyning's avatar
dyning committed
72
# 预测image_dir指定的单张图像
dyning's avatar
dyning committed
73
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
74
75

# 预测image_dir指定的图像集合
dyning's avatar
dyning committed
76
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
77

LDOUBLEV's avatar
LDOUBLEV committed
78
# 如果想使用CPU进行预测,需设置use_gpu参数为False
dyning's avatar
dyning committed
79
80
81
82
83
84
85
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
tink2123's avatar
tink2123 committed
86
```
LDOUBLEV's avatar
LDOUBLEV committed
87

88
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/doc_ch/inference.md)
tink2123's avatar
tink2123 committed
89

dyning's avatar
dyning committed
90
## 文档教程
91
92
93
94
95
- [快速安装](./doc/doc_ch/installation.md)
- [文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
- [文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
- [基于预测引擎推理](./doc/doc_ch/inference.md)
- [数据集](./doc/doc_ch/datasets.md)
dyning's avatar
dyning committed
96

dyning's avatar
dyning committed
97
## 文本检测算法
tink2123's avatar
tink2123 committed
98
99

PaddleOCR开源的文本检测算法列表:
tink2123's avatar
tink2123 committed
100
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
101
102
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
103

dyning's avatar
dyning committed
104
在ICDAR2015文本检测公开数据集上,算法效果如下:
tink2123's avatar
tink2123 committed
105

LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
106
|模型|骨干网络|precision|recall|Hmean|下载链接|
107
|-|-|-|-|-|-|
dyning's avatar
dyning committed
108
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
109
110
111
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
112

MissPenguin's avatar
MissPenguin committed
113
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集共3w张数据,训练中文检测模型的相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
114
115
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
116
117
|超轻量中文模型|MobileNetV3|det_mv3_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|
|通用中文OCR模型|ResNet50_vd|det_r50_vd_db.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|
tink2123's avatar
tink2123 committed
118

119
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
tink2123's avatar
tink2123 committed
120

121
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/doc_ch/detection.md)
tink2123's avatar
tink2123 committed
122

dyning's avatar
dyning committed
123
## 文本识别算法
tink2123's avatar
tink2123 committed
124
125

PaddleOCR开源的文本识别算法列表:
tink2123's avatar
tink2123 committed
126
127
128
129
130
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
131

dyning's avatar
dyning committed
132
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
tink2123's avatar
tink2123 committed
133

dyning's avatar
dyning committed
134
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
dyning's avatar
dyning committed
135
|-|-|-|-|-|
dyning's avatar
dyning committed
136
137
138
139
140
141
142
143
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
tink2123's avatar
tink2123 committed
144

MissPenguin's avatar
MissPenguin committed
145
使用[LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_ch/datasets.md#1icdar2019-lsvt)街景数据集根据真值将图crop出来30w数据,进行位置校准。此外基于LSVT语料生成500w合成数据训练中文模型,相关配置和预训练文件如下:
tink2123's avatar
tink2123 committed
146
147
|模型|骨干网络|配置文件|预训练模型|
|-|-|-|-|
dyning's avatar
dyning committed
148
149
|超轻量中文模型|MobileNetV3|rec_chinese_lite_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|通用中文OCR模型|Resnet34_vd|rec_chinese_common_train.yml|[下载链接](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
tink2123's avatar
tink2123 committed
150

151
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/doc_ch/recognition.md)
tink2123's avatar
tink2123 committed
152

dyning's avatar
dyning committed
153
154
## 端到端OCR算法
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
tink2123's avatar
tink2123 committed
155

dyning's avatar
dyning committed
156
<a name="超轻量级中文OCR效果展示"></a>
dyning's avatar
dyning committed
157
## 超轻量级中文OCR效果展示
LDOUBLEV's avatar
LDOUBLEV committed
158
159
160
161
162
163
164
165
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
tink2123's avatar
tink2123 committed
166

dyning's avatar
dyning committed
167
<a name="通用中文OCR效果展示"></a>
168
169
170
171
172
## 通用中文OCR效果展示
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

dyning's avatar
dyning committed
173
## FAQ
tink2123's avatar
tink2123 committed
174
1. **转换attention识别模型时报错:KeyError: 'predict'**  
MissPenguin's avatar
MissPenguin committed
175
问题已解,请更新到最新代码。  
tink2123's avatar
tink2123 committed
176

tink2123's avatar
tink2123 committed
177
2. **关于推理速度**  
root's avatar
root committed
178
图片中的文字较多时,预测时间会增,可以使用--rec_batch_num设置更小预测batch num,默认值为30,可以改为10或其他数值。  
MissPenguin's avatar
MissPenguin committed
179

tink2123's avatar
tink2123 committed
180
3. **服务部署与移动端部署**  
root's avatar
root committed
181
预计6月中下旬会先后发布基于Serving的服务部署方案和基于Paddle Lite的移动端部署方案,欢迎持续关注。  
tink2123's avatar
tink2123 committed
182

tink2123's avatar
tink2123 committed
183
4. **自研算法发布时间**  
root's avatar
root committed
184
自研算法SAST、SRN、End2End-PSL都将在6-7月陆续发布,敬请期待。  
MissPenguin's avatar
MissPenguin committed
185

186
[more](./doc/doc_ch/FAQ.md)
dyning's avatar
dyning committed
187
188

## 欢迎加入PaddleOCR技术交流群
MissPenguin's avatar
MissPenguin committed
189
扫描二维码或者加微信:paddlehelp,备注OCR,小助手拉你进群~
MissPenguin's avatar
MissPenguin committed
190
191
<img src="./doc/paddlehelp.jpg"  style="zoom: 50%;" />

dyning's avatar
dyning committed
192

dyning's avatar
dyning committed
193
## 参考文献
tink2123's avatar
tink2123 committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```
dyning's avatar
dyning committed
247
248
249
250

## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

LDOUBLEV's avatar
LDOUBLEV committed
251
## 贡献代码
dyning's avatar
dyning committed
252
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。
tink2123's avatar
tink2123 committed
253
254

- 非常感谢 [Khanh Tran](https://github.com/xxxpsyduck) 贡献了英文文档。
LDOUBLEV's avatar
LDOUBLEV committed
255
- 非常感谢 [zhangxin](https://github.com/ZhangXinNan)([Blog](https://blog.csdn.net/sdlypyzq)) 贡献新的可视化方式、添加.gitgnore、处理手动设置PYTHONPATH环境变量的问题