distillation_loss.py 11.1 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle
import paddle.nn as nn
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
17
18
import numpy as np
import cv2
littletomatodonkey's avatar
littletomatodonkey committed
19
20

from .rec_ctc_loss import CTCLoss
andyjpaddle's avatar
andyjpaddle committed
21
from .rec_sar_loss import SARLoss
littletomatodonkey's avatar
littletomatodonkey committed
22
from .basic_loss import DMLLoss
23
from .basic_loss import DistanceLoss
LDOUBLEV's avatar
LDOUBLEV committed
24
25
from .det_db_loss import DBLoss
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss
littletomatodonkey's avatar
littletomatodonkey committed
26
27


LDOUBLEV's avatar
LDOUBLEV committed
28
29
30
31
32
33
34
35
36
37
38
39
def _sum_loss(loss_dict):
    if "loss" in loss_dict.keys():
        return loss_dict
    else:
        loss_dict["loss"] = 0.
        for k, value in loss_dict.items():
            if k == "loss":
                continue
            else:
                loss_dict["loss"] += value
        return loss_dict

LDOUBLEV's avatar
LDOUBLEV committed
40
41

class DistillationDMLLoss(DMLLoss):
littletomatodonkey's avatar
littletomatodonkey committed
42
43
44
    """
    """

LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
    def __init__(self,
                 model_name_pairs=[],
                 act=None,
48
                 use_log=False,
LDOUBLEV's avatar
LDOUBLEV committed
49
                 key=None,
andyjpaddle's avatar
andyjpaddle committed
50
51
                 multi_head=False,
                 dis_head='ctc',
LDOUBLEV's avatar
LDOUBLEV committed
52
                 maps_name=None,
LDOUBLEV's avatar
LDOUBLEV committed
53
                 name="dml"):
54
        super().__init__(act=act, use_log=use_log)
55
        assert isinstance(model_name_pairs, list)
littletomatodonkey's avatar
littletomatodonkey committed
56
        self.key = key
andyjpaddle's avatar
andyjpaddle committed
57
58
        self.multi_head = multi_head
        self.dis_head = dis_head
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
59
        self.model_name_pairs = self._check_model_name_pairs(model_name_pairs)
littletomatodonkey's avatar
littletomatodonkey committed
60
        self.name = name
LDOUBLEV's avatar
LDOUBLEV committed
61
        self.maps_name = self._check_maps_name(maps_name)
62

LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
63
64
65
    def _check_model_name_pairs(self, model_name_pairs):
        if not isinstance(model_name_pairs, list):
            return []
66
67
        elif isinstance(model_name_pairs[0], list) and isinstance(
                model_name_pairs[0][0], str):
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
68
69
70
            return model_name_pairs
        else:
            return [model_name_pairs]
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    def _check_maps_name(self, maps_name):
        if maps_name is None:
            return None
        elif type(maps_name) == str:
            return [maps_name]
        elif type(maps_name) == list:
            return [maps_name]
        else:
            return None

    def _slice_out(self, outs):
        new_outs = {}
        for k in self.maps_name:
            if k == "thrink_maps":
LDOUBLEV's avatar
LDOUBLEV committed
86
                new_outs[k] = outs[:, 0, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
87
            elif k == "threshold_maps":
LDOUBLEV's avatar
LDOUBLEV committed
88
                new_outs[k] = outs[:, 1, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
89
            elif k == "binary_maps":
LDOUBLEV's avatar
LDOUBLEV committed
90
                new_outs[k] = outs[:, 2, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
91
92
            else:
                continue
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
93
        return new_outs
littletomatodonkey's avatar
littletomatodonkey committed
94
95
96

    def forward(self, predicts, batch):
        loss_dict = dict()
97
98
99
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
littletomatodonkey's avatar
littletomatodonkey committed
100
101
102
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
LDOUBLEV's avatar
LDOUBLEV committed
103
104

            if self.maps_name is None:
andyjpaddle's avatar
andyjpaddle committed
105
106
107
108
109
                if self.multi_head:
                    loss = super().forward(out1[self.dis_head],
                                           out2[self.dis_head])
                else:
                    loss = super().forward(out1, out2)
LDOUBLEV's avatar
LDOUBLEV committed
110
111
112
113
114
115
                if isinstance(loss, dict):
                    for key in loss:
                        loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
                                                       idx)] = loss[key]
                else:
                    loss_dict["{}_{}".format(self.name, idx)] = loss
116
            else:
LDOUBLEV's avatar
LDOUBLEV committed
117
118
                outs1 = self._slice_out(out1)
                outs2 = self._slice_out(out2)
LDOUBLEV's avatar
LDOUBLEV committed
119
                for _c, k in enumerate(outs1.keys()):
LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
123
                    loss = super().forward(outs1[k], outs2[k])
                    if isinstance(loss, dict):
                        for key in loss:
                            loss_dict["{}_{}_{}_{}_{}".format(key, pair[
littletomatodonkey's avatar
littletomatodonkey committed
124
                                0], pair[1], self.maps_name, idx)] = loss[key]
LDOUBLEV's avatar
LDOUBLEV committed
125
                    else:
126
127
128
                        loss_dict["{}_{}_{}".format(self.name, self.maps_name[
                            _c], idx)] = loss

LDOUBLEV's avatar
LDOUBLEV committed
129
130
        loss_dict = _sum_loss(loss_dict)

littletomatodonkey's avatar
littletomatodonkey committed
131
132
133
134
        return loss_dict


class DistillationCTCLoss(CTCLoss):
andyjpaddle's avatar
andyjpaddle committed
135
136
137
138
139
    def __init__(self,
                 model_name_list=[],
                 key=None,
                 multi_head=False,
                 name="loss_ctc"):
littletomatodonkey's avatar
littletomatodonkey committed
140
141
142
143
        super().__init__()
        self.model_name_list = model_name_list
        self.key = key
        self.name = name
andyjpaddle's avatar
andyjpaddle committed
144
        self.multi_head = multi_head
littletomatodonkey's avatar
littletomatodonkey committed
145
146
147

    def forward(self, predicts, batch):
        loss_dict = dict()
148
        for idx, model_name in enumerate(self.model_name_list):
littletomatodonkey's avatar
littletomatodonkey committed
149
150
151
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
andyjpaddle's avatar
andyjpaddle committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
            if self.multi_head:
                assert 'ctc' in out, 'multi head has multi out'
                loss = super().forward(out['ctc'], batch[:2] + batch[3:])
            else:
                loss = super().forward(out, batch)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
        return loss_dict


class DistillationSARLoss(SARLoss):
    def __init__(self,
                 model_name_list=[],
                 key=None,
                 multi_head=False,
                 name="loss_sar",
                 **kwargs):
        ignore_index = kwargs.get('ignore_index', 92)
        super().__init__(ignore_index=ignore_index)
        self.model_name_list = model_name_list
        self.key = key
        self.name = name
        self.multi_head = multi_head

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            if self.multi_head:
                assert 'sar' in out, 'multi head has multi out'
                loss = super().forward(out['sar'], batch[:1] + batch[2:])
            else:
                loss = super().forward(out, batch)
littletomatodonkey's avatar
littletomatodonkey committed
191
            if isinstance(loss, dict):
192
193
194
195
196
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, model_name,
                                                idx)] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss
littletomatodonkey's avatar
littletomatodonkey committed
197
        return loss_dict
198
199


LDOUBLEV's avatar
LDOUBLEV committed
200
201
202
203
204
205
206
207
208
class DistillationDBLoss(DBLoss):
    def __init__(self,
                 model_name_list=[],
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
LDOUBLEV's avatar
LDOUBLEV committed
209
                 name="db",
LDOUBLEV's avatar
LDOUBLEV committed
210
211
212
213
214
215
                 **kwargs):
        super().__init__()
        self.model_name_list = model_name_list
        self.name = name
        self.key = None

LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
216
    def forward(self, predicts, batch):
LDOUBLEV's avatar
LDOUBLEV committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
        loss_dict = {}
        for idx, model_name in enumerate(self.model_name_list):
            out = predicts[model_name]
            if self.key is not None:
                out = out[self.key]
            loss = super().forward(out, batch)

            if isinstance(loss, dict):
                for key in loss.keys():
                    if key == "loss":
                        continue
                    name = "{}_{}_{}".format(self.name, model_name, key)
                    loss_dict[name] = loss[key]
            else:
                loss_dict["{}_{}".format(self.name, model_name)] = loss

        loss_dict = _sum_loss(loss_dict)
        return loss_dict


class DistillationDilaDBLoss(DBLoss):
    def __init__(self,
                 model_name_pairs=[],
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
240
                 key=None,
LDOUBLEV's avatar
LDOUBLEV committed
241
242
243
244
245
246
247
248
249
250
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 name="dila_dbloss"):
        super().__init__()
        self.model_name_pairs = model_name_pairs
        self.name = name
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
251
        self.key = key
LDOUBLEV's avatar
LDOUBLEV committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            stu_outs = predicts[pair[0]]
            tch_outs = predicts[pair[1]]
            if self.key is not None:
                stu_preds = stu_outs[self.key]
                tch_preds = tch_outs[self.key]

            stu_shrink_maps = stu_preds[:, 0, :, :]
            stu_binary_maps = stu_preds[:, 2, :, :]

            # dilation to teacher prediction
            dilation_w = np.array([[1, 1], [1, 1]])
            th_shrink_maps = tch_preds[:, 0, :, :]
            th_shrink_maps = th_shrink_maps.numpy() > 0.3  # thresh = 0.3 
            dilate_maps = np.zeros_like(th_shrink_maps).astype(np.float32)
            for i in range(th_shrink_maps.shape[0]):
                dilate_maps[i] = cv2.dilate(
                    th_shrink_maps[i, :, :].astype(np.uint8), dilation_w)
            th_shrink_maps = paddle.to_tensor(dilate_maps)

            label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = batch[
                1:]

            # calculate the shrink map loss
            bce_loss = self.alpha * self.bce_loss(
                stu_shrink_maps, th_shrink_maps, label_shrink_mask)
            loss_binary_maps = self.dice_loss(stu_binary_maps, th_shrink_maps,
                                              label_shrink_mask)

            # k = f"{self.name}_{pair[0]}_{pair[1]}"
            k = "{}_{}_{}".format(self.name, pair[0], pair[1])
            loss_dict[k] = bce_loss + loss_binary_maps

        loss_dict = _sum_loss(loss_dict)
LDOUBLEV's avatar
fix bug  
LDOUBLEV committed
289
        return loss_dict
LDOUBLEV's avatar
LDOUBLEV committed
290
291


292
293
294
295
296
297
298
299
300
301
class DistillationDistanceLoss(DistanceLoss):
    """
    """

    def __init__(self,
                 mode="l2",
                 model_name_pairs=[],
                 key=None,
                 name="loss_distance",
                 **kargs):
littletomatodonkey's avatar
littletomatodonkey committed
302
        super().__init__(mode=mode, **kargs)
303
304
305
        assert isinstance(model_name_pairs, list)
        self.key = key
        self.model_name_pairs = model_name_pairs
littletomatodonkey's avatar
littletomatodonkey committed
306
        self.name = name + "_l2"
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

    def forward(self, predicts, batch):
        loss_dict = dict()
        for idx, pair in enumerate(self.model_name_pairs):
            out1 = predicts[pair[0]]
            out2 = predicts[pair[1]]
            if self.key is not None:
                out1 = out1[self.key]
                out2 = out2[self.key]
            loss = super().forward(out1, out2)
            if isinstance(loss, dict):
                for key in loss:
                    loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[
                        key]
            else:
littletomatodonkey's avatar
littletomatodonkey committed
322
323
                loss_dict["{}_{}_{}_{}".format(self.name, pair[0], pair[1],
                                               idx)] = loss
324
        return loss_dict