dataset_traversal.py 10.8 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
tink2123's avatar
tink2123 committed
16
import sys
LDOUBLEV's avatar
LDOUBLEV committed
17
18
19
20
21
22
23
24
25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
tink2123's avatar
tink2123 committed
26
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
44
        self.drop_last = False
tink2123's avatar
tink2123 committed
45
        self.use_tps = False
tink2123's avatar
tink2123 committed
46
        if "tps" in params:
tink2123's avatar
tink2123 committed
47
            self.ues_tps = True
tink2123's avatar
tink2123 committed
48
        self.use_distort = False
tink2123's avatar
tink2123 committed
49
        if "distort" in params:
tink2123's avatar
tink2123 committed
50
51
52
53
54
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU. Distort will be set to False."
                )
LDOUBLEV's avatar
LDOUBLEV committed
55
56
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
57
            self.drop_last = True
tink2123's avatar
tink2123 committed
58
        else:
LDOUBLEV's avatar
LDOUBLEV committed
59
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
60
            self.drop_last = False
tink2123's avatar
tink2123 committed
61
62
        self.infer_img = params['infer_img']

LDOUBLEV's avatar
LDOUBLEV committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
115
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
116
117
118
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
119
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
120
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
121
122
123
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
tink2123's avatar
tink2123 committed
124
                        char_ops=self.char_ops,
tink2123's avatar
tink2123 committed
125
                        tps=self.use_tps,
tink2123's avatar
tink2123 committed
126
                        infer_mode=True)
tink2123's avatar
tink2123 committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
tink2123's avatar
tink2123 committed
146
147
148
149
150
151
                            outs = process_image(
                                img=img,
                                image_shape=self.image_shape,
                                label=label,
                                char_ops=self.char_ops,
                                loss_type=self.loss_type,
tink2123's avatar
tink2123 committed
152
153
                                max_text_length=self.max_text_length,
                                distort=self.use_distort)
tink2123's avatar
tink2123 committed
154
155
156
157
158
159
160
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
tink2123's avatar
tink2123 committed
161

LDOUBLEV's avatar
LDOUBLEV committed
162
163
164
165
166
167
168
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
169
170
171
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
172

tink2123's avatar
tink2123 committed
173
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
174
175
            return batch_iter_reader
        return sample_iter_reader
LDOUBLEV's avatar
LDOUBLEV committed
176
177
178
179
180
181
182
183


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
tink2123's avatar
tink2123 committed
184
185
186
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
LDOUBLEV's avatar
LDOUBLEV committed
187
188
189
190
191
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
192
        self.infer_img = params['infer_img']
tink2123's avatar
tink2123 committed
193
        self.use_tps = False
tink2123's avatar
tink2123 committed
194
        if "tps" in params:
tink2123's avatar
tink2123 committed
195
            self.use_tps = True
tink2123's avatar
tink2123 committed
196
        self.use_distort = False
tink2123's avatar
tink2123 committed
197
        if "distort" in params:
tink2123's avatar
tink2123 committed
198
199
200
201
202
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU.Distort will be set to False."
                )
LDOUBLEV's avatar
LDOUBLEV committed
203
204
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
205
            self.drop_last = True
LDOUBLEV's avatar
LDOUBLEV committed
206
        else:
tink2123's avatar
tink2123 committed
207
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
208
            self.drop_last = False
LDOUBLEV's avatar
LDOUBLEV committed
209
210
211
212
213
214

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
215
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
216
                image_file_list = get_image_file_list(self.infer_img)
tink2123's avatar
tink2123 committed
217
218
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
219
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
220
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
221
222
223
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
tink2123's avatar
tink2123 committed
224
                        char_ops=self.char_ops,
tink2123's avatar
tink2123 committed
225
                        tps=self.use_tps,
tink2123's avatar
tink2123 committed
226
                        infer_mode=True)
tink2123's avatar
tink2123 committed
227
                    yield norm_img
tink2123's avatar
tink2123 committed
228
229
230
231
232
233
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
tink2123's avatar
tink2123 committed
234
                if sys.platform == "win32":
tink2123's avatar
tink2123 committed
235
236
237
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
tink2123's avatar
tink2123 committed
238
239
240
241
242
243
244
245
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
tink2123's avatar
tink2123 committed
246
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
247
248
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

tink2123's avatar
tink2123 committed
249
                    label = substr[1]
tink2123's avatar
tink2123 committed
250
251
252
253
254
255
256
257
                    outs = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        label=label,
                        char_ops=self.char_ops,
                        loss_type=self.loss_type,
                        max_text_length=self.max_text_length,
                        distort=self.use_distort)
tink2123's avatar
tink2123 committed
258
259
260
                    if outs is None:
                        continue
                    yield outs
LDOUBLEV's avatar
LDOUBLEV committed
261
262
263
264
265
266
267
268

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
269
270
271
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
272

tink2123's avatar
tink2123 committed
273
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
274
275
            return batch_iter_reader
        return sample_iter_reader