dataset_traversal.py 9.14 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
tink2123's avatar
tink2123 committed
16
import sys
LDOUBLEV's avatar
LDOUBLEV committed
17
18
19
20
21
22
23
24
25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
tink2123's avatar
tink2123 committed
26
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
46
        else:
LDOUBLEV's avatar
LDOUBLEV committed
47
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
48
49
        self.infer_img = params['infer_img']

LDOUBLEV's avatar
LDOUBLEV committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
102
            if self.infer_img is not None:
tink2123's avatar
tink2123 committed
103
104
105
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
106
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
107
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
108
109
110
111
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        char_ops=self.char_ops)
tink2123's avatar
tink2123 committed
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
                            outs = process_image(img, self.image_shape, label,
                                                 self.char_ops, self.loss_type,
                                                 self.max_text_length)
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
tink2123's avatar
tink2123 committed
141

LDOUBLEV's avatar
LDOUBLEV committed
142
143
144
145
146
147
148
149
150
151
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

tink2123's avatar
tink2123 committed
152
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
153
154
            return batch_iter_reader
        return sample_iter_reader
LDOUBLEV's avatar
LDOUBLEV committed
155
156
157
158
159
160
161
162


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
tink2123's avatar
tink2123 committed
163
164
165
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
LDOUBLEV's avatar
LDOUBLEV committed
166
167
168
169
170
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
171
        self.infer_img = params['infer_img']
LDOUBLEV's avatar
LDOUBLEV committed
172
173
174
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
        else:
tink2123's avatar
tink2123 committed
175
            self.batch_size = params['test_batch_size_per_card']
LDOUBLEV's avatar
LDOUBLEV committed
176
177
178
179
180
181

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
182
            if self.infer_img is not None:
tink2123's avatar
tink2123 committed
183
                image_file_list = get_image_file_list(self.infer_img)
tink2123's avatar
tink2123 committed
184
185
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
186
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
187
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
188
189
190
191
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        char_ops=self.char_ops)
tink2123's avatar
tink2123 committed
192
                    yield norm_img
tink2123's avatar
tink2123 committed
193
194
195
196
197
198
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
tink2123's avatar
tink2123 committed
199
                if sys.platform == "win32":
tink2123's avatar
tink2123 committed
200
201
202
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
tink2123's avatar
tink2123 committed
203
204
205
206
207
208
209
210
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
tink2123's avatar
tink2123 committed
211
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
212
213
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

tink2123's avatar
tink2123 committed
214
215
216
217
218
219
220
                    label = substr[1]
                    outs = process_image(img, self.image_shape, label,
                                         self.char_ops, self.loss_type,
                                         self.max_text_length)
                    if outs is None:
                        continue
                    yield outs
LDOUBLEV's avatar
LDOUBLEV committed
221
222
223
224
225
226
227
228
229
230
231

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

tink2123's avatar
tink2123 committed
232
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
233
234
            return batch_iter_reader
        return sample_iter_reader