dataset_traversal.py 10.3 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
tink2123's avatar
tink2123 committed
16
import sys
LDOUBLEV's avatar
LDOUBLEV committed
17
18
19
20
21
22
23
24
25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
tink2123's avatar
tink2123 committed
26
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
44
        self.drop_last = False
tink2123's avatar
tink2123 committed
45
        self.use_tps = False
tink2123's avatar
tink2123 committed
46
        if "tps" in params:
tink2123's avatar
tink2123 committed
47
            self.ues_tps = True
tink2123's avatar
tink2123 committed
48
49
        if "distort" in params:
            self.use_distort = params['distort']
LDOUBLEV's avatar
LDOUBLEV committed
50
51
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
52
            self.drop_last = True
tink2123's avatar
tink2123 committed
53
        else:
LDOUBLEV's avatar
LDOUBLEV committed
54
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
55
            self.drop_last = False
tink2123's avatar
tink2123 committed
56
57
        self.infer_img = params['infer_img']

LDOUBLEV's avatar
LDOUBLEV committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
110
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
111
112
113
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
114
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
115
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
116
117
118
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
tink2123's avatar
tink2123 committed
119
                        char_ops=self.char_ops,
tink2123's avatar
tink2123 committed
120
                        tps=self.use_tps,
tink2123's avatar
tink2123 committed
121
                        infer_mode=True)
tink2123's avatar
tink2123 committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
tink2123's avatar
tink2123 committed
141
142
143
144
145
146
                            outs = process_image(
                                img=img,
                                image_shape=self.image_shape,
                                label=label,
                                char_ops=self.char_ops,
                                loss_type=self.loss_type,
tink2123's avatar
tink2123 committed
147
148
                                max_text_length=self.max_text_length,
                                distort=self.use_distort)
tink2123's avatar
tink2123 committed
149
150
151
152
153
154
155
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
tink2123's avatar
tink2123 committed
156

LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
161
162
163
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
164
165
166
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
167

tink2123's avatar
tink2123 committed
168
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
169
170
            return batch_iter_reader
        return sample_iter_reader
LDOUBLEV's avatar
LDOUBLEV committed
171
172
173
174
175
176
177
178


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
tink2123's avatar
tink2123 committed
179
180
181
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
LDOUBLEV's avatar
LDOUBLEV committed
182
183
184
185
186
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
187
        self.infer_img = params['infer_img']
tink2123's avatar
tink2123 committed
188
        self.use_tps = False
tink2123's avatar
tink2123 committed
189
        if "tps" in params:
tink2123's avatar
tink2123 committed
190
            self.use_tps = True
tink2123's avatar
tink2123 committed
191
192
        if "distort" in params:
            self.use_distort = params['distort']
LDOUBLEV's avatar
LDOUBLEV committed
193
194
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
195
            self.drop_last = True
LDOUBLEV's avatar
LDOUBLEV committed
196
        else:
tink2123's avatar
tink2123 committed
197
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
198
            self.drop_last = False
LDOUBLEV's avatar
LDOUBLEV committed
199
200
201
202
203
204

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
205
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
206
                image_file_list = get_image_file_list(self.infer_img)
tink2123's avatar
tink2123 committed
207
208
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
209
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
210
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
211
212
213
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
tink2123's avatar
tink2123 committed
214
                        char_ops=self.char_ops,
tink2123's avatar
tink2123 committed
215
                        tps=self.use_tps,
tink2123's avatar
tink2123 committed
216
                        infer_mode=True)
tink2123's avatar
tink2123 committed
217
                    yield norm_img
tink2123's avatar
tink2123 committed
218
219
220
221
222
223
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
tink2123's avatar
tink2123 committed
224
                if sys.platform == "win32":
tink2123's avatar
tink2123 committed
225
226
227
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
tink2123's avatar
tink2123 committed
228
229
230
231
232
233
234
235
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
tink2123's avatar
tink2123 committed
236
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
237
238
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

tink2123's avatar
tink2123 committed
239
                    label = substr[1]
tink2123's avatar
tink2123 committed
240
241
242
243
244
245
246
247
                    outs = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        label=label,
                        char_ops=self.char_ops,
                        loss_type=self.loss_type,
                        max_text_length=self.max_text_length,
                        distort=self.use_distort)
tink2123's avatar
tink2123 committed
248
249
250
                    if outs is None:
                        continue
                    yield outs
LDOUBLEV's avatar
LDOUBLEV committed
251
252
253
254
255
256
257
258

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
259
260
261
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
262

tink2123's avatar
tink2123 committed
263
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
264
265
            return batch_iter_reader
        return sample_iter_reader