main.cpp 12.7 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
34
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
35
36
37
#include <sys/stat.h>

#include <gflags/gflags.h>
MissPenguin's avatar
MissPenguin committed
38
#include "auto_log/autolog.h"
MissPenguin's avatar
MissPenguin committed
39
40
41
42

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
43
44
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
45
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
46
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
MissPenguin's avatar
MissPenguin committed
47
DEFINE_bool(benchmark, false, "Whether use benchmark.");
MissPenguin's avatar
MissPenguin committed
48
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
64
DEFINE_int32(rec_batch_num, 6, "rec_batch_num.");
MissPenguin's avatar
MissPenguin committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");


using namespace std;
using namespace cv;
using namespace PaddleOCR;


static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


MissPenguin's avatar
MissPenguin committed
84
85
int main_det(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
86
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
87
88
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
89
90
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
91
92
                   FLAGS_use_tensorrt, FLAGS_precision);
    
MissPenguin's avatar
MissPenguin committed
93
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
94
//       LOG(INFO) << "The predict img: " << cv_all_img_names[i];
MissPenguin's avatar
MissPenguin committed
95
96
97
98
99
100
101

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
102
      std::vector<double> det_times;
MissPenguin's avatar
MissPenguin committed
103

MissPenguin's avatar
MissPenguin committed
104
105
106
107
108
      det.Run(srcimg, boxes, &det_times);
  
      time_info[0] += det_times[0];
      time_info[1] += det_times[1];
      time_info[2] += det_times[2];
109
110
111
112
113
114
115
116
117
118
    
      if (FLAGS_benchmark) {
          cout << cv_all_img_names[i] << '\t';
          for (int n = 0; n < boxes.size(); n++) {
            for (int m = 0; m < boxes[n].size(); m++) {
              cout << boxes[n][m][0] << ' ' << boxes[n][m][1] << ' ';
            }
          }
          cout << endl;
      }        
MissPenguin's avatar
MissPenguin committed
119
120
    }
    
MissPenguin's avatar
MissPenguin committed
121
    if (FLAGS_benchmark) {
MissPenguin's avatar
MissPenguin committed
122
123
124
125
126
127
128
129
130
131
132
        AutoLogger autolog("ocr_det", 
                           FLAGS_use_gpu,
                           FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn,
                           FLAGS_cpu_threads,
                           1, 
                           "dynamic", 
                           FLAGS_precision, 
                           time_info, 
                           cv_all_img_names.size());
        autolog.report();
MissPenguin's avatar
MissPenguin committed
133
    }
MissPenguin's avatar
MissPenguin committed
134
135
136
137
    return 0;
}


MissPenguin's avatar
MissPenguin committed
138
139
int main_rec(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
140
141
142
143
144
145
    
    std::string char_list_file = FLAGS_char_list_file;
    if (FLAGS_benchmark) 
        char_list_file = FLAGS_char_list_file.substr(6);
    cout << "label file: " << char_list_file << endl;
        
MissPenguin's avatar
MissPenguin committed
146
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
147
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
MissPenguin's avatar
MissPenguin committed
148
                       FLAGS_enable_mkldnn, char_list_file,
MissPenguin's avatar
MissPenguin committed
149
                       FLAGS_use_tensorrt, FLAGS_precision, FLAGS_rec_batch_num);
MissPenguin's avatar
MissPenguin committed
150

MissPenguin's avatar
MissPenguin committed
151
    std::vector<cv::Mat> img_list;
MissPenguin's avatar
MissPenguin committed
152
153
154
155
156
157
158
159
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
MissPenguin's avatar
MissPenguin committed
160
      img_list.push_back(srcimg);
MissPenguin's avatar
MissPenguin committed
161
    }
MissPenguin's avatar
MissPenguin committed
162
163
164
165
166
167
    std::vector<double> rec_times;
    rec.Run(img_list, &rec_times);
    time_info[0] += rec_times[0];
    time_info[1] += rec_times[1];
    time_info[2] += rec_times[2];
    
MissPenguin's avatar
MissPenguin committed
168
169
170
171
172
173
    if (FLAGS_benchmark) {
        AutoLogger autolog("ocr_rec", 
                           FLAGS_use_gpu,
                           FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn,
                           FLAGS_cpu_threads,
MissPenguin's avatar
MissPenguin committed
174
                           FLAGS_rec_batch_num, 
MissPenguin's avatar
MissPenguin committed
175
176
177
178
179
180
                           "dynamic", 
                           FLAGS_precision, 
                           time_info, 
                           cv_all_img_names.size());
        autolog.report();
    }
MissPenguin's avatar
MissPenguin committed
181
182
183
184
    return 0;
}


MissPenguin's avatar
MissPenguin committed
185
int main_system(std::vector<cv::String> cv_all_img_names) {
MissPenguin's avatar
MissPenguin committed
186
187
188
    std::vector<double> time_info_det = {0, 0, 0};
    std::vector<double> time_info_rec = {0, 0, 0};

MissPenguin's avatar
MissPenguin committed
189
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
190
191
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
192
193
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
194
                   FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
195
196
197
198

    Classifier *cls = nullptr;
    if (FLAGS_use_angle_cls) {
      cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
199
200
                           FLAGS_gpu_mem, FLAGS_cpu_threads,
                           FLAGS_enable_mkldnn, FLAGS_cls_thresh,
MissPenguin's avatar
MissPenguin committed
201
                           FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
202
203
    }

MissPenguin's avatar
MissPenguin committed
204
205
206
207
208
    std::string char_list_file = FLAGS_char_list_file;
    if (FLAGS_benchmark) 
        char_list_file = FLAGS_char_list_file.substr(6);
    cout << "label file: " << char_list_file << endl;
        
MissPenguin's avatar
MissPenguin committed
209
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
210
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
MissPenguin's avatar
MissPenguin committed
211
                       FLAGS_enable_mkldnn, char_list_file,
MissPenguin's avatar
MissPenguin committed
212
                       FLAGS_use_tensorrt, FLAGS_precision, FLAGS_rec_batch_num);
MissPenguin's avatar
MissPenguin committed
213
214
215
216

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

MissPenguin's avatar
MissPenguin committed
217
      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
MissPenguin's avatar
MissPenguin committed
218
219
220
221
222
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
223
224
225
226
      std::vector<double> det_times;
      std::vector<double> rec_times;
        
      det.Run(srcimg, boxes, &det_times);
MissPenguin's avatar
MissPenguin committed
227
228
229
230
      time_info_det[0] += det_times[0];
      time_info_det[1] += det_times[1];
      time_info_det[2] += det_times[2];
        
MissPenguin's avatar
MissPenguin committed
231
      std::vector<cv::Mat> img_list;
MissPenguin's avatar
MissPenguin committed
232
      for (int j = 0; j < boxes.size(); j++) {
MissPenguin's avatar
MissPenguin committed
233
234
235
236
237
238
          cv::Mat crop_img;
          crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
          if (cls != nullptr) {
              crop_img = cls->Run(crop_img);
          }
          img_list.push_back(crop_img);
MissPenguin's avatar
MissPenguin committed
239
      }
MissPenguin's avatar
MissPenguin committed
240
241
242
243
244

      rec.Run(img_list, &rec_times);
      time_info_rec[0] += rec_times[0];
      time_info_rec[1] += rec_times[1];
      time_info_rec[2] += rec_times[2];
MissPenguin's avatar
MissPenguin committed
245
    }
MissPenguin's avatar
MissPenguin committed
246
    
MissPenguin's avatar
MissPenguin committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    if (FLAGS_benchmark) {
        AutoLogger autolog_det("ocr_det", 
                            FLAGS_use_gpu,
                            FLAGS_use_tensorrt,
                            FLAGS_enable_mkldnn,
                            FLAGS_cpu_threads,
                            1, 
                            "dynamic", 
                            FLAGS_precision, 
                            time_info_det, 
                            cv_all_img_names.size());
        AutoLogger autolog_rec("ocr_rec", 
                            FLAGS_use_gpu,
                            FLAGS_use_tensorrt,
                            FLAGS_enable_mkldnn,
                            FLAGS_cpu_threads,
MissPenguin's avatar
MissPenguin committed
263
                            FLAGS_rec_batch_num, 
MissPenguin's avatar
MissPenguin committed
264
265
266
267
268
269
270
271
                            "dynamic", 
                            FLAGS_precision, 
                            time_info_rec, 
                            cv_all_img_names.size());
        autolog_det.report();
        std::cout << endl;
        autolog_rec.report();
    }  
MissPenguin's avatar
MissPenguin committed
272
273
274
275
    return 0;
}


MissPenguin's avatar
MissPenguin committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
void check_params(char* mode) {
    if (strcmp(mode, "det")==0) {
        if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);      
        }
    }
    if (strcmp(mode, "rec")==0) {
        if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);
        }
    }
    if (strcmp(mode, "system")==0) {
        if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
           (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
            std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--use_angle_cls=true "
                        << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            exit(1);      
        }
    }
    if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
        cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
        exit(1);
    }
}


MissPenguin's avatar
MissPenguin committed
312
int main(int argc, char **argv) {
MissPenguin's avatar
MissPenguin committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
        std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
        return -1;
    }
    std::cout << "mode: " << argv[1] << endl;

    // Parsing command-line
    google::ParseCommandLineFlags(&argc, &argv, true);
    check_params(argv[1]);
        
    if (!PathExists(FLAGS_image_dir)) {
        std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
        exit(1);      
    }
MissPenguin's avatar
MissPenguin committed
327
    
MissPenguin's avatar
MissPenguin committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
    std::vector<cv::String> cv_all_img_names;
    cv::glob(FLAGS_image_dir, cv_all_img_names);
    std::cout << "total images num: " << cv_all_img_names.size() << endl;
    
    if (strcmp(argv[1], "det")==0) {
        return main_det(cv_all_img_names);
    }
    if (strcmp(argv[1], "rec")==0) {
        return main_rec(cv_all_img_names);
    }    
    if (strcmp(argv[1], "system")==0) {
        return main_system(cv_all_img_names);
    } 

MissPenguin's avatar
MissPenguin committed
342
}