main.cpp 10.4 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
34
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
35
36
37
38
39
40
41
#include <sys/stat.h>

#include <gflags/gflags.h>

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
42
43
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
44
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
45
46
47
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
63
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
MissPenguin's avatar
MissPenguin committed
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");


using namespace std;
using namespace cv;
using namespace PaddleOCR;


static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


MissPenguin's avatar
MissPenguin committed
83
84
int main_det(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
85
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
86
87
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
88
89
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
90
91
                   FLAGS_use_tensorrt, FLAGS_precision);
    
MissPenguin's avatar
MissPenguin committed
92
93
94
95
96
97
98
99
100
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
101
      std::vector<double> det_times;
MissPenguin's avatar
MissPenguin committed
102

MissPenguin's avatar
MissPenguin committed
103
104
105
106
107
      det.Run(srcimg, boxes, &det_times);
  
      time_info[0] += det_times[0];
      time_info[1] += det_times[1];
      time_info[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
108
109
    }
    
MissPenguin's avatar
MissPenguin committed
110
    if (FLAGS_benchmark) {
MissPenguin's avatar
MissPenguin committed
111
112
113
114
115
116
117
118
119
120
121
        AutoLogger autolog("ocr_det", 
                           FLAGS_use_gpu,
                           FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn,
                           FLAGS_cpu_threads,
                           1, 
                           "dynamic", 
                           FLAGS_precision, 
                           time_info, 
                           cv_all_img_names.size());
        autolog.report();
MissPenguin's avatar
MissPenguin committed
122
    }
MissPenguin's avatar
MissPenguin committed
123
124
125
126
    return 0;
}


MissPenguin's avatar
MissPenguin committed
127
128
int main_rec(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
129
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
130
131
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
132
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
133
134
135
136
137
138
139
140
141
142

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }

MissPenguin's avatar
MissPenguin committed
143
144
      std::vector<double> rec_times;
      rec.Run(srcimg, &rec_times);
MissPenguin's avatar
MissPenguin committed
145
        
MissPenguin's avatar
MissPenguin committed
146
147
148
149
150
      time_info[0] += rec_times[0];
      time_info[1] += rec_times[1];
      time_info[2] += rec_times[2];
    }
    
MissPenguin's avatar
MissPenguin committed
151
152
153
154
    return 0;
}


MissPenguin's avatar
MissPenguin committed
155
int main_system(std::vector<cv::String> cv_all_img_names) {
MissPenguin's avatar
MissPenguin committed
156
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
157
158
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
159
160
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
161
                   FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
162
163
164
165

    Classifier *cls = nullptr;
    if (FLAGS_use_angle_cls) {
      cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
166
167
                           FLAGS_gpu_mem, FLAGS_cpu_threads,
                           FLAGS_enable_mkldnn, FLAGS_cls_thresh,
MissPenguin's avatar
MissPenguin committed
168
                           FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
169
170
171
    }

    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
172
173
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
174
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
175
176
177
178
179
180
181
182
183
184
185
186

    auto start = std::chrono::system_clock::now();

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
187
188
189
190
      std::vector<double> det_times;
      std::vector<double> rec_times;
        
      det.Run(srcimg, boxes, &det_times);
MissPenguin's avatar
MissPenguin committed
191
192
193
    
      cv::Mat crop_img;
      for (int j = 0; j < boxes.size(); j++) {
MissPenguin's avatar
MissPenguin committed
194
        crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
MissPenguin's avatar
MissPenguin committed
195
196
197
198

        if (cls != nullptr) {
          crop_img = cls->Run(crop_img);
        }
MissPenguin's avatar
MissPenguin committed
199
        rec.Run(crop_img, &rec_times);
MissPenguin's avatar
MissPenguin committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
      }
        
      auto end = std::chrono::system_clock::now();
      auto duration =
          std::chrono::duration_cast<std::chrono::microseconds>(end - start);
      std::cout << "Cost  "
                << double(duration.count()) *
                       std::chrono::microseconds::period::num /
                       std::chrono::microseconds::period::den
                << "s" << std::endl;
    }
      
    return 0;
}


MissPenguin's avatar
MissPenguin committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
void check_params(char* mode) {
    if (strcmp(mode, "det")==0) {
        if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);      
        }
    }
    if (strcmp(mode, "rec")==0) {
        if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);
        }
    }
    if (strcmp(mode, "system")==0) {
        if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
           (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
            std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--use_angle_cls=true "
                        << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            exit(1);      
        }
    }
    if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
        cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
        exit(1);
    }
}


MissPenguin's avatar
MissPenguin committed
252
int main(int argc, char **argv) {
MissPenguin's avatar
MissPenguin committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
        std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
        return -1;
    }
    std::cout << "mode: " << argv[1] << endl;

    // Parsing command-line
    google::ParseCommandLineFlags(&argc, &argv, true);
    check_params(argv[1]);
        
    if (!PathExists(FLAGS_image_dir)) {
        std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
        exit(1);      
    }
MissPenguin's avatar
MissPenguin committed
267
    
MissPenguin's avatar
MissPenguin committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
    std::vector<cv::String> cv_all_img_names;
    cv::glob(FLAGS_image_dir, cv_all_img_names);
    std::cout << "total images num: " << cv_all_img_names.size() << endl;
    
    if (strcmp(argv[1], "det")==0) {
        return main_det(cv_all_img_names);
    }
    if (strcmp(argv[1], "rec")==0) {
        return main_rec(cv_all_img_names);
    }    
    if (strcmp(argv[1], "system")==0) {
        return main_system(cv_all_img_names);
    } 

MissPenguin's avatar
MissPenguin committed
282
}