main.cpp 11.6 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
34
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
35
36
37
38
39
40
41
#include <sys/stat.h>

#include <gflags/gflags.h>

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
42
43
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
44
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
45
46
47
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
63
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
MissPenguin's avatar
MissPenguin committed
64
65
66
67
68
69
70
71
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");


using namespace std;
using namespace cv;
using namespace PaddleOCR;


MissPenguin's avatar
MissPenguin committed
72
73
74
75
76
77
78
79
80
81
void PrintBenchmarkLog(std::string model_name, 
                       int batch_size, 
                       std::string input_shape,
                       std::vector<double> time_info,
                       int img_num){
  LOG(INFO) << "----------------------- Config info -----------------------";
  LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
  LOG(INFO) << "ir_optim: " << "True";
  LOG(INFO) << "enable_memory_optim: " << "True";
  LOG(INFO) << "enable_tensorrt: " << FLAGS_use_tensorrt;
MissPenguin's avatar
MissPenguin committed
82
83
  LOG(INFO) << "enable_mkldnn: " << (FLAGS_enable_mkldnn ? "True" : "False");
  LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads;
MissPenguin's avatar
MissPenguin committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
  LOG(INFO) << "----------------------- Data info -----------------------";
  LOG(INFO) << "batch_size: " << batch_size;
  LOG(INFO) << "input_shape: " << input_shape;
  LOG(INFO) << "data_num: " << img_num;
  LOG(INFO) << "----------------------- Model info -----------------------";
  LOG(INFO) << "model_name: " << model_name;
  LOG(INFO) << "precision: " << FLAGS_precision;
  LOG(INFO) << "----------------------- Perf info ------------------------";
  LOG(INFO) << "Total time spent(ms): "
            << std::accumulate(time_info.begin(), time_info.end(), 0);
  LOG(INFO) << "preprocess_time(ms): " << time_info[0] / img_num
            << ", inference_time(ms): " << time_info[1] / img_num
            << ", postprocess_time(ms): " << time_info[2] / img_num;
}


MissPenguin's avatar
MissPenguin committed
100
101
102
103
104
105
106
107
108
109
110
static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


MissPenguin's avatar
MissPenguin committed
111
112
int main_det(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
113
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
114
115
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
116
117
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
118
119
                   FLAGS_use_tensorrt, FLAGS_precision);
    
MissPenguin's avatar
MissPenguin committed
120
121
122
123
124
125
126
127
128
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
129
      std::vector<double> det_times;
MissPenguin's avatar
MissPenguin committed
130

MissPenguin's avatar
MissPenguin committed
131
132
133
134
135
      det.Run(srcimg, boxes, &det_times);
  
      time_info[0] += det_times[0];
      time_info[1] += det_times[1];
      time_info[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
136
137
    }
    
MissPenguin's avatar
MissPenguin committed
138
139
140
    if (FLAGS_benchmark) {
        PrintBenchmarkLog("det", 1, "dynamic", time_info, cv_all_img_names.size());
    }
MissPenguin's avatar
MissPenguin committed
141
142
143
144
    return 0;
}


MissPenguin's avatar
MissPenguin committed
145
146
int main_rec(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
147
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
148
149
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
150
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
151
152
153
154
155
156
157
158
159
160

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }

MissPenguin's avatar
MissPenguin committed
161
162
      std::vector<double> rec_times;
      rec.Run(srcimg, &rec_times);
MissPenguin's avatar
MissPenguin committed
163
        
MissPenguin's avatar
MissPenguin committed
164
165
166
167
168
169
170
      time_info[0] += rec_times[0];
      time_info[1] += rec_times[1];
      time_info[2] += rec_times[2];
    }
    
    if (FLAGS_benchmark) {
        PrintBenchmarkLog("rec", 1, "dynamic", time_info, cv_all_img_names.size());
MissPenguin's avatar
MissPenguin committed
171
172
173
174
175
176
    }
    
    return 0;
}


MissPenguin's avatar
MissPenguin committed
177
int main_system(std::vector<cv::String> cv_all_img_names) {
MissPenguin's avatar
MissPenguin committed
178
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
179
180
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
181
182
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
183
                   FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
184
185
186
187

    Classifier *cls = nullptr;
    if (FLAGS_use_angle_cls) {
      cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
188
189
                           FLAGS_gpu_mem, FLAGS_cpu_threads,
                           FLAGS_enable_mkldnn, FLAGS_cls_thresh,
MissPenguin's avatar
MissPenguin committed
190
                           FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
191
192
193
    }

    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
194
195
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
196
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
197
198
199
200
201
202
203
204
205
206
207
208

    auto start = std::chrono::system_clock::now();

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
209
210
211
212
      std::vector<double> det_times;
      std::vector<double> rec_times;
        
      det.Run(srcimg, boxes, &det_times);
MissPenguin's avatar
MissPenguin committed
213
214
215
    
      cv::Mat crop_img;
      for (int j = 0; j < boxes.size(); j++) {
MissPenguin's avatar
MissPenguin committed
216
        crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
MissPenguin's avatar
MissPenguin committed
217
218
219
220

        if (cls != nullptr) {
          crop_img = cls->Run(crop_img);
        }
MissPenguin's avatar
MissPenguin committed
221
        rec.Run(crop_img, &rec_times);
MissPenguin's avatar
MissPenguin committed
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      }
        
      auto end = std::chrono::system_clock::now();
      auto duration =
          std::chrono::duration_cast<std::chrono::microseconds>(end - start);
      std::cout << "Cost  "
                << double(duration.count()) *
                       std::chrono::microseconds::period::num /
                       std::chrono::microseconds::period::den
                << "s" << std::endl;
    }
      
    return 0;
}


MissPenguin's avatar
MissPenguin committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
void check_params(char* mode) {
    if (strcmp(mode, "det")==0) {
        if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);      
        }
    }
    if (strcmp(mode, "rec")==0) {
        if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);
        }
    }
    if (strcmp(mode, "system")==0) {
        if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
           (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
            std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--use_angle_cls=true "
                        << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            exit(1);      
        }
    }
    if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
        cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
        exit(1);
    }
}


MissPenguin's avatar
MissPenguin committed
274
int main(int argc, char **argv) {
MissPenguin's avatar
MissPenguin committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
        std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
        return -1;
    }
    std::cout << "mode: " << argv[1] << endl;

    // Parsing command-line
    google::ParseCommandLineFlags(&argc, &argv, true);
    check_params(argv[1]);
        
    if (!PathExists(FLAGS_image_dir)) {
        std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
        exit(1);      
    }
MissPenguin's avatar
MissPenguin committed
289
    
MissPenguin's avatar
MissPenguin committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    std::vector<cv::String> cv_all_img_names;
    cv::glob(FLAGS_image_dir, cv_all_img_names);
    std::cout << "total images num: " << cv_all_img_names.size() << endl;
    
    if (strcmp(argv[1], "det")==0) {
        return main_det(cv_all_img_names);
    }
    if (strcmp(argv[1], "rec")==0) {
        return main_rec(cv_all_img_names);
    }    
    if (strcmp(argv[1], "system")==0) {
        return main_system(cv_all_img_names);
    } 

MissPenguin's avatar
MissPenguin committed
304
}