"vscode:/vscode.git/clone" did not exist on "8edf5981aa1e7938444c36f40fa30653751bece9"
main.cpp 11.9 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_cls.h>
#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
34
#include <include/utility.h>
MissPenguin's avatar
MissPenguin committed
35
36
37
#include <sys/stat.h>

#include <gflags/gflags.h>
MissPenguin's avatar
MissPenguin committed
38
#include "auto_log/autolog.h"
MissPenguin's avatar
MissPenguin committed
39
40
41
42

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
MissPenguin's avatar
MissPenguin committed
43
44
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
MissPenguin's avatar
MissPenguin committed
45
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
MissPenguin's avatar
MissPenguin committed
46
47
48
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
DEFINE_string(save_log_path, "./log_output/", "Save benchmark log path.");
MissPenguin's avatar
MissPenguin committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
// detection related
DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");
// classification related
DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
MissPenguin's avatar
MissPenguin committed
64
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
MissPenguin's avatar
MissPenguin committed
65
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
MissPenguin's avatar
MissPenguin committed
66
// DEFINE_string(char_list_file, "./ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
MissPenguin's avatar
MissPenguin committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


using namespace std;
using namespace cv;
using namespace PaddleOCR;


static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


MissPenguin's avatar
MissPenguin committed
85
86
int main_det(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
87
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
88
89
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
90
91
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
92
93
                   FLAGS_use_tensorrt, FLAGS_precision);
    
MissPenguin's avatar
MissPenguin committed
94
95
96
97
98
99
100
101
102
    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
103
      std::vector<double> det_times;
MissPenguin's avatar
MissPenguin committed
104

MissPenguin's avatar
MissPenguin committed
105
106
107
108
109
      det.Run(srcimg, boxes, &det_times);
  
      time_info[0] += det_times[0];
      time_info[1] += det_times[1];
      time_info[2] += det_times[2];
MissPenguin's avatar
MissPenguin committed
110
111
    }
    
MissPenguin's avatar
MissPenguin committed
112
    if (FLAGS_benchmark) {
MissPenguin's avatar
MissPenguin committed
113
114
115
116
117
118
119
120
121
122
123
        AutoLogger autolog("ocr_det", 
                           FLAGS_use_gpu,
                           FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn,
                           FLAGS_cpu_threads,
                           1, 
                           "dynamic", 
                           FLAGS_precision, 
                           time_info, 
                           cv_all_img_names.size());
        autolog.report();
MissPenguin's avatar
MissPenguin committed
124
    }
MissPenguin's avatar
MissPenguin committed
125
126
127
128
    return 0;
}


MissPenguin's avatar
MissPenguin committed
129
130
int main_rec(std::vector<cv::String> cv_all_img_names) {
    std::vector<double> time_info = {0, 0, 0};
MissPenguin's avatar
MissPenguin committed
131
    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
132
133
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
134
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
135
136
137
138
139
140
141
142
143
144

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }

MissPenguin's avatar
MissPenguin committed
145
146
      std::vector<double> rec_times;
      rec.Run(srcimg, &rec_times);
MissPenguin's avatar
MissPenguin committed
147
        
MissPenguin's avatar
MissPenguin committed
148
149
150
151
      time_info[0] += rec_times[0];
      time_info[1] += rec_times[1];
      time_info[2] += rec_times[2];
    }
MissPenguin's avatar
MissPenguin committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
        
    if (FLAGS_benchmark) {
        AutoLogger autolog("ocr_rec", 
                           FLAGS_use_gpu,
                           FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn,
                           FLAGS_cpu_threads,
                           1, 
                           "dynamic", 
                           FLAGS_precision, 
                           time_info, 
                           cv_all_img_names.size());
        autolog.report();
    }
MissPenguin's avatar
MissPenguin committed
166
167
168
169
    return 0;
}


MissPenguin's avatar
MissPenguin committed
170
int main_system(std::vector<cv::String> cv_all_img_names) {
MissPenguin's avatar
MissPenguin committed
171
172
173
    std::vector<double> time_info_det = {0, 0, 0};
    std::vector<double> time_info_rec = {0, 0, 0};

MissPenguin's avatar
MissPenguin committed
174
    DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
175
176
                   FLAGS_gpu_mem, FLAGS_cpu_threads, 
                   FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
MissPenguin's avatar
MissPenguin committed
177
178
                   FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                   FLAGS_use_polygon_score, FLAGS_visualize,
MissPenguin's avatar
MissPenguin committed
179
                   FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
180
181
182
183

    Classifier *cls = nullptr;
    if (FLAGS_use_angle_cls) {
      cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
184
185
                           FLAGS_gpu_mem, FLAGS_cpu_threads,
                           FLAGS_enable_mkldnn, FLAGS_cls_thresh,
MissPenguin's avatar
MissPenguin committed
186
                           FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
187
188
189
    }

    CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
MissPenguin's avatar
MissPenguin committed
190
191
                       FLAGS_gpu_mem, FLAGS_cpu_threads,
                       FLAGS_enable_mkldnn, FLAGS_char_list_file,
MissPenguin's avatar
MissPenguin committed
192
                       FLAGS_use_tensorrt, FLAGS_precision);
MissPenguin's avatar
MissPenguin committed
193
194
195
196

    for (int i = 0; i < cv_all_img_names.size(); ++i) {
      LOG(INFO) << "The predict img: " << cv_all_img_names[i];

MissPenguin's avatar
MissPenguin committed
197
      cv::Mat srcimg = cv::imread(cv_all_img_names[i], cv::IMREAD_COLOR);
MissPenguin's avatar
MissPenguin committed
198
199
200
201
202
      if (!srcimg.data) {
        std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
        exit(1);
      }
      std::vector<std::vector<std::vector<int>>> boxes;
MissPenguin's avatar
MissPenguin committed
203
204
205
206
      std::vector<double> det_times;
      std::vector<double> rec_times;
        
      det.Run(srcimg, boxes, &det_times);
MissPenguin's avatar
MissPenguin committed
207
208
209
210
      time_info_det[0] += det_times[0];
      time_info_det[1] += det_times[1];
      time_info_det[2] += det_times[2];
        
MissPenguin's avatar
MissPenguin committed
211
212
      cv::Mat crop_img;
      for (int j = 0; j < boxes.size(); j++) {
MissPenguin's avatar
MissPenguin committed
213
        crop_img = Utility::GetRotateCropImage(srcimg, boxes[j]);
MissPenguin's avatar
MissPenguin committed
214
215
216
217

        if (cls != nullptr) {
          crop_img = cls->Run(crop_img);
        }
MissPenguin's avatar
MissPenguin committed
218
        rec.Run(crop_img, &rec_times);
MissPenguin's avatar
MissPenguin committed
219
220
221
        time_info_rec[0] += rec_times[0];
        time_info_rec[1] += rec_times[1];
        time_info_rec[2] += rec_times[2];
MissPenguin's avatar
MissPenguin committed
222
223
      }
    }
MissPenguin's avatar
MissPenguin committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    if (FLAGS_benchmark) {
        AutoLogger autolog_det("ocr_det", 
                            FLAGS_use_gpu,
                            FLAGS_use_tensorrt,
                            FLAGS_enable_mkldnn,
                            FLAGS_cpu_threads,
                            1, 
                            "dynamic", 
                            FLAGS_precision, 
                            time_info_det, 
                            cv_all_img_names.size());
        AutoLogger autolog_rec("ocr_rec", 
                            FLAGS_use_gpu,
                            FLAGS_use_tensorrt,
                            FLAGS_enable_mkldnn,
                            FLAGS_cpu_threads,
                            1, 
                            "dynamic", 
                            FLAGS_precision, 
                            time_info_rec, 
                            cv_all_img_names.size());
        autolog_det.report();
        std::cout << endl;
        autolog_rec.report();
    }  
MissPenguin's avatar
MissPenguin committed
249
250
251
252
    return 0;
}


MissPenguin's avatar
MissPenguin committed
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
void check_params(char* mode) {
    if (strcmp(mode, "det")==0) {
        if (FLAGS_det_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[det]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);      
        }
    }
    if (strcmp(mode, "rec")==0) {
        if (FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) {
            std::cout << "Usage[rec]: ./ppocr --rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                      << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;      
            exit(1);
        }
    }
    if (strcmp(mode, "system")==0) {
        if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
           (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
            std::cout << "Usage[system without angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            std::cout << "Usage[system with angle cls]: ./ppocr --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                        << "--use_angle_cls=true "
                        << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                        << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                        << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
            exit(1);      
        }
    }
    if (FLAGS_precision != "fp32" && FLAGS_precision != "fp16" && FLAGS_precision != "int8") {
        cout << "precison should be 'fp32'(default), 'fp16' or 'int8'. " << endl;
        exit(1);
    }
}


MissPenguin's avatar
MissPenguin committed
289
int main(int argc, char **argv) {
MissPenguin's avatar
MissPenguin committed
290
291
292
293
294
295
296
297
298
299
300
301
302
303
    if (argc<=1 || (strcmp(argv[1], "det")!=0 && strcmp(argv[1], "rec")!=0 && strcmp(argv[1], "system")!=0)) {
        std::cout << "Please choose one mode of [det, rec, system] !" << std::endl;
        return -1;
    }
    std::cout << "mode: " << argv[1] << endl;

    // Parsing command-line
    google::ParseCommandLineFlags(&argc, &argv, true);
    check_params(argv[1]);
        
    if (!PathExists(FLAGS_image_dir)) {
        std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
        exit(1);      
    }
MissPenguin's avatar
MissPenguin committed
304
    
MissPenguin's avatar
MissPenguin committed
305
306
307
308
309
310
311
312
313
314
315
316
317
318
    std::vector<cv::String> cv_all_img_names;
    cv::glob(FLAGS_image_dir, cv_all_img_names);
    std::cout << "total images num: " << cv_all_img_names.size() << endl;
    
    if (strcmp(argv[1], "det")==0) {
        return main_det(cv_all_img_names);
    }
    if (strcmp(argv[1], "rec")==0) {
        return main_rec(cv_all_img_names);
    }    
    if (strcmp(argv[1], "system")==0) {
        return main_system(cv_all_img_names);
    } 

MissPenguin's avatar
MissPenguin committed
319
}