"test/ref/nearbyint.cpp" did not exist on "e12032fbfb2de8d50a36a9bd404ab8ca4adc9a46"
predict_det.py 8.44 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
23
24
import cv2
import numpy as np
import time
import sys
WenmuZhou's avatar
WenmuZhou committed
25
import paddle
26

LDOUBLEV's avatar
LDOUBLEV committed
27
import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
28
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
29
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
WenmuZhou's avatar
WenmuZhou committed
30
31
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
LDOUBLEV's avatar
LDOUBLEV committed
32

WenmuZhou's avatar
WenmuZhou committed
33
34
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38

class TextDetector(object):
    def __init__(self, args):
        self.det_algorithm = args.det_algorithm
littletomatodonkey's avatar
littletomatodonkey committed
39
        self.use_zero_copy_run = args.use_zero_copy_run
MissPenguin's avatar
MissPenguin committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        pre_process_list = [{
            'DetResizeForTest': {
                'limit_side_len': args.det_limit_side_len,
                'limit_type': args.det_limit_type
            }
        }, {
            'NormalizeImage': {
                'std': [0.229, 0.224, 0.225],
                'mean': [0.485, 0.456, 0.406],
                'scale': '1./255.',
                'order': 'hwc'
            }
        }, {
            'ToCHWImage': None
        }, {
            'KeepKeys': {
                'keep_keys': ['image', 'shape']
            }
        }]
LDOUBLEV's avatar
LDOUBLEV committed
59
60
        postprocess_params = {}
        if self.det_algorithm == "DB":
WenmuZhou's avatar
WenmuZhou committed
61
            postprocess_params['name'] = 'DBPostProcess'
LDOUBLEV's avatar
LDOUBLEV committed
62
63
64
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
65
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
MissPenguin's avatar
MissPenguin committed
66
            postprocess_params["use_dilation"] = True
MissPenguin's avatar
MissPenguin committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        elif self.det_algorithm == "EAST":
            postprocess_params['name'] = 'EASTPostProcess'      
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
        elif self.det_algorithm == "SAST":
            postprocess_params['name'] = 'SASTPostProcess'      
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
88
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
89
90
        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
91
92
93
        self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
            args, 'det', logger)  # paddle.jit.load(args.det_model_dir)
        # self.predictor.eval()
LDOUBLEV's avatar
LDOUBLEV committed
94
95

    def order_points_clockwise(self, pts):
96
97
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
98
        # sort the points based on their x-coordinates
99
        """
LDOUBLEV's avatar
LDOUBLEV committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
119
    def clip_det_res(self, points, img_height, img_width):
120
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
121
122
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
126
127
128
129
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
130
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
131
132
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
MissPenguin's avatar
MissPenguin committed
133
            if rect_width <= 3 or rect_height <= 3:
LDOUBLEV's avatar
LDOUBLEV committed
134
135
136
137
138
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

139
140
141
142
143
144
145
146
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
147

LDOUBLEV's avatar
LDOUBLEV committed
148
149
    def __call__(self, img):
        ori_im = img.copy()
WenmuZhou's avatar
WenmuZhou committed
150
151
152
153
        data = {'image': img}
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
LDOUBLEV's avatar
LDOUBLEV committed
154
            return None, 0
WenmuZhou's avatar
WenmuZhou committed
155
156
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
157
        img = img.copy()
LDOUBLEV's avatar
LDOUBLEV committed
158
        starttime = time.time()
159

160
161
162
163
164
165
166
167
168
169
170
        if self.use_zero_copy_run:
            self.input_tensor.copy_from_cpu(img)
            self.predictor.zero_copy_run()
        else:
            im = paddle.fluid.core.PaddleTensor(img)
            self.predictor.run([im])
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)

MissPenguin's avatar
MissPenguin committed
171
172
173
174
175
176
177
178
179
180
181
182
        preds = {}
        if self.det_algorithm == "EAST":
            preds['f_geo'] = outputs[0]
            preds['f_score'] = outputs[1]
        elif self.det_algorithm == 'SAST':
            preds['f_border'] = outputs[0]
            preds['f_score'] = outputs[1]
            preds['f_tco'] = outputs[2]
            preds['f_tvo'] = outputs[3]
        else:
            preds['maps'] = outputs[0]

WenmuZhou's avatar
WenmuZhou committed
183
184
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
MissPenguin's avatar
MissPenguin committed
185
186
187
188
        if self.det_algorithm == "SAST" and self.det_sast_polygon:
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
189
190
191
192
193
194
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
195
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
196
197
198
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
199
200
201
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
202
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
203
204
205
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
206
207
208
209
210
211
212
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
WenmuZhou's avatar
WenmuZhou committed
213
        logger.info("Predict time of {}: {}".format(image_file, elapse))
dyning's avatar
dyning committed
214
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
WenmuZhou's avatar
WenmuZhou committed
215
        img_name_pure = os.path.split(image_file)[-1]
WenmuZhou's avatar
WenmuZhou committed
216
217
        img_path = os.path.join(draw_img_save,
                                "det_res_{}".format(img_name_pure))
WenmuZhou's avatar
WenmuZhou committed
218
        cv2.imwrite(img_path, src_im)
WenmuZhou's avatar
WenmuZhou committed
219
        logger.info("The visualized image saved in {}".format(img_path))
220
    if count > 1:
221
        logger.info("Avg Time: {}".format(total_time / (count - 1)))