predict_det.py 7.74 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19

20
21
22
23
24
25
26
27
28
import cv2
import copy
import numpy as np
import math
import time
import sys

import paddle.fluid as fluid

LDOUBLEV's avatar
LDOUBLEV committed
29
import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
30
31
from ppocr.utils.utility import initial_logger
logger = initial_logger()
LDOUBLEV's avatar
LDOUBLEV committed
32
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
licx's avatar
licx committed
33
from ppocr.data.det.sast_process import SASTProcessTest
LDOUBLEV's avatar
LDOUBLEV committed
34
35
36
37
from ppocr.data.det.east_process import EASTProcessTest
from ppocr.data.det.db_process import DBProcessTest
from ppocr.postprocess.db_postprocess import DBPostProcess
from ppocr.postprocess.east_postprocess import EASTPostPocess
licx's avatar
licx committed
38
from ppocr.postprocess.sast_postprocess import SASTPostProcess
LDOUBLEV's avatar
LDOUBLEV committed
39
40
41
42
43
44
45
46
47
48
49
50
51


class TextDetector(object):
    def __init__(self, args):
        max_side_len = args.det_max_side_len
        self.det_algorithm = args.det_algorithm
        preprocess_params = {'max_side_len': max_side_len}
        postprocess_params = {}
        if self.det_algorithm == "DB":
            self.preprocess_op = DBProcessTest(preprocess_params)
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
52
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
            self.postprocess_op = DBPostProcess(postprocess_params)
        elif self.det_algorithm == "EAST":
            self.preprocess_op = EASTProcessTest(preprocess_params)
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
            self.postprocess_op = EASTPostPocess(postprocess_params)
licx's avatar
licx committed
60
61
62
63
        elif self.det_algorithm == "SAST":
            self.preprocess_op = SASTProcessTest(preprocess_params)
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
64
65
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
66
67
68
69
70
71
72
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
licx's avatar
licx committed
73
            self.postprocess_op = SASTPostProcess(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
74
75
76
77
78
79
80
81
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="det")

    def order_points_clockwise(self, pts):
82
83
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
84
        # sort the points based on their x-coordinates
85
        """
LDOUBLEV's avatar
LDOUBLEV committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
105
    def clip_det_res(self, points, img_height, img_width):
106
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
107
108
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
109
110
111
112
113
114
115
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
116
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
117
118
119
120
121
122
123
124
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 10 or rect_height <= 10:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

125
126
127
128
129
130
131
132
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
133

LDOUBLEV's avatar
LDOUBLEV committed
134
135
136
137
138
139
140
    def __call__(self, img):
        ori_im = img.copy()
        im, ratio_list = self.preprocess_op(img)
        if im is None:
            return None, 0
        im = im.copy()
        starttime = time.time()
141
142
        im = fluid.core.PaddleTensor(im)
        self.predictor.run([im])
LDOUBLEV's avatar
LDOUBLEV committed
143
144
145
146
147
148
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        outs_dict = {}
        if self.det_algorithm == "EAST":
LDOUBLEV's avatar
LDOUBLEV committed
149
150
            outs_dict['f_geo'] = outputs[0]
            outs_dict['f_score'] = outputs[1]
licx's avatar
licx committed
151
152
153
154
155
        elif self.det_algorithm == 'SAST':
            outs_dict['f_border'] = outputs[0]
            outs_dict['f_score'] = outputs[1]
            outs_dict['f_tco'] = outputs[2]
            outs_dict['f_tvo'] = outputs[3]
LDOUBLEV's avatar
LDOUBLEV committed
156
        else:
157
            outs_dict['maps'] = outputs[0]
158

LDOUBLEV's avatar
LDOUBLEV committed
159
160
        dt_boxes_list = self.postprocess_op(outs_dict, [ratio_list])
        dt_boxes = dt_boxes_list[0]
161
162
163
164
        if self.det_algorithm == "SAST" and self.det_sast_polygon:
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
165
166
167
168
169
170
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
171
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
172
173
174
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
175
176
177
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
178
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
179
180
181
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
182
183
184
185
186
187
188
189
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
        print("Predict time of %s:" % image_file, elapse)
dyning's avatar
dyning committed
190
191
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
        img_name_pure = image_file.split("/")[-1]
littletomatodonkey's avatar
littletomatodonkey committed
192
193
        cv2.imwrite(
            os.path.join(draw_img_save, "det_res_%s" % img_name_pure), src_im)
194
195
    if count > 1:
        print("Avg Time:", total_time / (count - 1))