predict_det.py 6.35 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
23
24
25
import cv2
import numpy as np
import time
import sys

WenmuZhou's avatar
WenmuZhou committed
26
import paddle
27

LDOUBLEV's avatar
LDOUBLEV committed
28
import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
29
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
30
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
WenmuZhou's avatar
WenmuZhou committed
31
32
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
LDOUBLEV's avatar
LDOUBLEV committed
33
34
35
36
37


class TextDetector(object):
    def __init__(self, args):
        self.det_algorithm = args.det_algorithm
littletomatodonkey's avatar
littletomatodonkey committed
38
        self.use_zero_copy_run = args.use_zero_copy_run
LDOUBLEV's avatar
LDOUBLEV committed
39
40
        postprocess_params = {}
        if self.det_algorithm == "DB":
WenmuZhou's avatar
WenmuZhou committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
            pre_process_list = [{
                'ResizeForTest': {
                    'limit_side_len': args.det_limit_side_len,
                    'limit_type': args.det_limit_type
                }
            }, {
                'NormalizeImage': {
                    'std': [0.229, 0.224, 0.225],
                    'mean': [0.485, 0.456, 0.406],
                    'scale': '1./255.',
                    'order': 'hwc'
                }
            }, {
                'ToCHWImage': None
            }, {
                'keepKeys': {
                    'keep_keys': ['image', 'shape']
                }
            }]
            postprocess_params['name'] = 'DBPostProcess'
LDOUBLEV's avatar
LDOUBLEV committed
61
62
63
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
64
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
68
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
69
70
71
72
        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
        self.predictor = paddle.jit.load(args.det_model_dir)
        self.predictor.eval()
LDOUBLEV's avatar
LDOUBLEV committed
73
74

    def order_points_clockwise(self, pts):
75
76
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
77
        # sort the points based on their x-coordinates
78
        """
LDOUBLEV's avatar
LDOUBLEV committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
98
    def clip_det_res(self, points, img_height, img_width):
99
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
100
101
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
102
103
104
105
106
107
108
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
109
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
110
111
112
113
114
115
116
117
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 10 or rect_height <= 10:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

118
119
120
121
122
123
124
125
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
126

LDOUBLEV's avatar
LDOUBLEV committed
127
128
    def __call__(self, img):
        ori_im = img.copy()
WenmuZhou's avatar
WenmuZhou committed
129
130
131
132
        data = {'image': img}
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
LDOUBLEV's avatar
LDOUBLEV committed
133
            return None, 0
WenmuZhou's avatar
WenmuZhou committed
134
135
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
LDOUBLEV's avatar
LDOUBLEV committed
136
        starttime = time.time()
137

WenmuZhou's avatar
WenmuZhou committed
138
139
140
141
142
        preds = self.predictor(img)
        post_result = self.postprocess_op(preds, shape_list)

        dt_boxes = post_result[0]['points']
        dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
143
144
145
146
147
148
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
WenmuZhou's avatar
WenmuZhou committed
149
150
151
    place = paddle.CPUPlace()
    paddle.disable_static(place)

LDOUBLEV's avatar
LDOUBLEV committed
152
    image_file_list = get_image_file_list(args.image_dir)
WenmuZhou's avatar
WenmuZhou committed
153
    logger = get_logger()
LDOUBLEV's avatar
LDOUBLEV committed
154
155
156
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
157
158
159
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
160
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
161
162
163
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
164
165
166
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
WenmuZhou's avatar
WenmuZhou committed
167
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
LDOUBLEV's avatar
LDOUBLEV committed
168
169
170
171
172
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
        print("Predict time of %s:" % image_file, elapse)
dyning's avatar
dyning committed
173
174
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
        img_name_pure = image_file.split("/")[-1]
littletomatodonkey's avatar
littletomatodonkey committed
175
176
        cv2.imwrite(
            os.path.join(draw_img_save, "det_res_%s" % img_name_pure), src_im)
177
178
    if count > 1:
        print("Avg Time:", total_time / (count - 1))