README.md 11.1 KB
Newer Older
dyning's avatar
dyning committed
1
## 简介
tink2123's avatar
tink2123 committed
2
3
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。

dyning's avatar
dyning committed
4
**近期更新**
tink2123's avatar
update  
tink2123 committed
5
6
7
- 2020.6.5 ,支持 `attetnion` 模型导出 `inference_model`
- 2020.6.5 ,支持单独预测识别时,输出结果得分
- 2020.6.5 ,优化报错信息
dyning's avatar
dyning committed
8
- 2020.5.30,模型预测、训练支持Windows系统,识别结果的显示进行了优化
dyning's avatar
dyning committed
9
- 2020.5.30,提供超轻量级中文OCR在线体验
dyning's avatar
dyning committed
10

dyning's avatar
dyning committed
11
## 特性
dyning's avatar
dyning committed
12
13
14
- 超轻量级中文OCR,总模型仅8.6M
    - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别
    - 检测模型DB(4.1M)+识别模型CRNN(4.5M)
dyning's avatar
dyning committed
15
16
17
- 多种文本检测训练算法,EAST、DB
- 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE

dyning's avatar
dyning committed
18
19
20
21
22
23
### 支持的中文模型列表:

|模型名称|模型简介|检测模型地址|识别模型地址|
|-|-|-|-|
|chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|
|chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
24

dyning's avatar
dyning committed
25
超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
LDOUBLEV's avatar
LDOUBLEV committed
26

dyning's avatar
dyning committed
27
**也可以按如下教程快速体验超轻量级中文OCR和通用中文OCR模型。**
LDOUBLEV's avatar
LDOUBLEV committed
28

dyning's avatar
dyning committed
29
## **超轻量级中文OCR以及通用中文OCR体验**
tink2123's avatar
tink2123 committed
30

LDOUBLEV's avatar
LDOUBLEV committed
31
![](doc/imgs_results/11.jpg)
LDOUBLEV's avatar
LDOUBLEV committed
32

dyning's avatar
dyning committed
33
上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)
dyning's avatar
dyning committed
34

dyning's avatar
dyning committed
35
#### 1.环境配置
LDOUBLEV's avatar
LDOUBLEV committed
36

dyning's avatar
dyning committed
37
请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。
tink2123's avatar
tink2123 committed
38

dyning's avatar
dyning committed
39
#### 2.inference模型下载
LDOUBLEV's avatar
LDOUBLEV committed
40

tink2123's avatar
tink2123 committed
41
42
*windows 环境下如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*

tink2123's avatar
tink2123 committed
43

dyning's avatar
dyning committed
44
#### (1)超轻量级中文OCR模型下载
tink2123's avatar
tink2123 committed
45
```
LDOUBLEV's avatar
LDOUBLEV committed
46
mkdir inference && cd inference
dyning's avatar
dyning committed
47
# 下载超轻量级中文OCR模型的检测模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
48
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar
dyning's avatar
dyning committed
49
# 下载超轻量级中文OCR模型的识别模型并解压
LDOUBLEV's avatar
LDOUBLEV committed
50
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar
dyning's avatar
dyning committed
51
52
53
54
55
56
57
58
59
60
cd ..
```
#### (2)通用中文OCR模型下载
```
mkdir inference && cd inference
# 下载通用中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar
# 下载通用中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar
cd ..
tink2123's avatar
tink2123 committed
61
62
```

dyning's avatar
dyning committed
63
64
#### 3.单张图像或者图像集合预测

dyning's avatar
dyning committed
65
以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。
dyning's avatar
dyning committed
66

tink2123's avatar
tink2123 committed
67
```
dyning's avatar
dyning committed
68
# 设置PYTHONPATH环境变量
tink2123's avatar
tink2123 committed
69
70
export PYTHONPATH=.

tink2123's avatar
tink2123 committed
71
72
73
# windows下设置环境变量
SET PYTHONPATH=.

dyning's avatar
dyning committed
74
# 预测image_dir指定的单张图像
dyning's avatar
dyning committed
75
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
76
77

# 预测image_dir指定的图像集合
dyning's avatar
dyning committed
78
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/"
dyning's avatar
dyning committed
79

LDOUBLEV's avatar
LDOUBLEV committed
80
# 如果想使用CPU进行预测,需设置use_gpu参数为False
dyning's avatar
dyning committed
81
82
83
84
85
86
87
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/"  --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False
```

通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下:
```
# 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/"  --rec_model_dir="./inference/ch_rec_r34_vd_crnn/"
tink2123's avatar
tink2123 committed
88
```
LDOUBLEV's avatar
LDOUBLEV committed
89

dyning's avatar
dyning committed
90
更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/inference.md)
tink2123's avatar
tink2123 committed
91

dyning's avatar
dyning committed
92
93
## 文档教程
- [快速安装](./doc/installation.md)
dyning's avatar
dyning committed
94
95
96
- [文本检测模型训练/评估/预测](./doc/detection.md)
- [文本识别模型训练/评估/预测](./doc/recognition.md)
- [基于预测引擎推理](./doc/inference.md)
dyning's avatar
dyning committed
97

dyning's avatar
dyning committed
98
## 文本检测算法
tink2123's avatar
tink2123 committed
99
100

PaddleOCR开源的文本检测算法列表:
tink2123's avatar
tink2123 committed
101
- [x]  EAST([paper](https://arxiv.org/abs/1704.03155))
tink2123's avatar
fix url  
tink2123 committed
102
103
- [x]  DB([paper](https://arxiv.org/abs/1911.08947))
- [ ]  SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
104

dyning's avatar
dyning committed
105
在ICDAR2015文本检测公开数据集上,算法效果如下:
tink2123's avatar
tink2123 committed
106

LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
107
|模型|骨干网络|precision|recall|Hmean|下载链接|
108
|-|-|-|-|-|-|
dyning's avatar
dyning committed
109
|EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)|
LDOUBLEV's avatar
fix doc  
LDOUBLEV committed
110
111
112
|EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)|
|DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)|
|DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)|
LDOUBLEV's avatar
LDOUBLEV committed
113

114
* 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化
tink2123's avatar
tink2123 committed
115

dyning's avatar
dyning committed
116
PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)
tink2123's avatar
tink2123 committed
117

dyning's avatar
dyning committed
118
## 文本识别算法
tink2123's avatar
tink2123 committed
119
120

PaddleOCR开源的文本识别算法列表:
tink2123's avatar
tink2123 committed
121
122
123
124
125
- [x]  CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x]  Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [x]  STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))
- [x]  RARE([paper](https://arxiv.org/abs/1603.03915v1))
- [ ]  SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon)
tink2123's avatar
tink2123 committed
126

dyning's avatar
dyning committed
127
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
tink2123's avatar
tink2123 committed
128

dyning's avatar
dyning committed
129
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
dyning's avatar
dyning committed
130
|-|-|-|-|-|
dyning's avatar
dyning committed
131
132
133
134
135
136
137
138
|Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)|
|Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)|
|CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)|
|CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)|
|STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)|
|STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)|
|RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)|
|RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)|
tink2123's avatar
tink2123 committed
139

dyning's avatar
dyning committed
140
PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)
tink2123's avatar
tink2123 committed
141

dyning's avatar
dyning committed
142
143
## 端到端OCR算法
- [ ]  [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon)
tink2123's avatar
tink2123 committed
144

dyning's avatar
dyning committed
145
<a name="效果展示"></a>
dyning's avatar
dyning committed
146
## 超轻量级中文OCR效果展示
LDOUBLEV's avatar
LDOUBLEV committed
147
148
149
150
151
152
153
154
![](doc/imgs_results/1.jpg)
![](doc/imgs_results/7.jpg)
![](doc/imgs_results/12.jpg)
![](doc/imgs_results/4.jpg)
![](doc/imgs_results/6.jpg)
![](doc/imgs_results/9.jpg)
![](doc/imgs_results/16.png)
![](doc/imgs_results/22.jpg)
tink2123's avatar
tink2123 committed
155

156
157
158
159
160
## 通用中文OCR效果展示
![](doc/imgs_results/chinese_db_crnn_server/11.jpg)
![](doc/imgs_results/chinese_db_crnn_server/2.jpg)
![](doc/imgs_results/chinese_db_crnn_server/8.jpg)

dyning's avatar
dyning committed
161
162
163
164
## 更新
- 2020.5.30,模型预测、训练支持Windows系统,识别结果的显示进行了优化
- 2020.5.30,开源通用中文OCR模型
- 2020.5.30,提供超轻量级中文OCR在线体验
tink2123's avatar
update  
tink2123 committed
165
166
167
- 2020.6.5 ,支持 `attetnion` 模型导出 `inference_model`
- 2020.6.5 ,支持单独预测识别时,输出结果得分
- 2020.6.5 ,优化报错信息
tink2123's avatar
tink2123 committed
168

dyning's avatar
dyning committed
169
## 参考文献
tink2123's avatar
tink2123 committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
```
1. EAST:
@inproceedings{zhou2017east,
  title={EAST: an efficient and accurate scene text detector},
  author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun},
  booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition},
  pages={5551--5560},
  year={2017}
}

2. DB:
@article{liao2019real,
  title={Real-time Scene Text Detection with Differentiable Binarization},
  author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
  journal={arXiv preprint arXiv:1911.08947},
  year={2019}
}

3. DTRB:
@inproceedings{baek2019wrong,
  title={What is wrong with scene text recognition model comparisons? dataset and model analysis},
  author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={4715--4723},
  year={2019}
}

4. SAST:
@inproceedings{wang2019single,
  title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning},
  author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming},
  booktitle={Proceedings of the 27th ACM International Conference on Multimedia},
  pages={1277--1285},
  year={2019}
}

5. SRN:
@article{yu2020towards,
  title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
  author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
  journal={arXiv preprint arXiv:2003.12294},
  year={2020}
}

6. end2end-psl:
@inproceedings{sun2019chinese,
  title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning},
  author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9086--9095},
  year={2019}
}
```
dyning's avatar
dyning committed
223
224
225
226
227
228

## 许可证书
本项目的发布受<a href="https://github.com/PaddlePaddle/PaddleOCR/blob/master/LICENSE">Apache 2.0 license</a>许可认证。

## 如何贡献代码
我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。