predict_det.py 6.92 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
23
24
import cv2
import numpy as np
import time
import sys
WenmuZhou's avatar
WenmuZhou committed
25
import paddle
26

LDOUBLEV's avatar
LDOUBLEV committed
27
import tools.infer.utility as utility
WenmuZhou's avatar
WenmuZhou committed
28
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
29
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
WenmuZhou's avatar
WenmuZhou committed
30
31
from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process
LDOUBLEV's avatar
LDOUBLEV committed
32

WenmuZhou's avatar
WenmuZhou committed
33
34
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
35
36
37
38

class TextDetector(object):
    def __init__(self, args):
        self.det_algorithm = args.det_algorithm
littletomatodonkey's avatar
littletomatodonkey committed
39
        self.use_zero_copy_run = args.use_zero_copy_run
LDOUBLEV's avatar
LDOUBLEV committed
40
41
        postprocess_params = {}
        if self.det_algorithm == "DB":
WenmuZhou's avatar
WenmuZhou committed
42
            pre_process_list = [{
43
                'DetResizeForTest': {
WenmuZhou's avatar
WenmuZhou committed
44
45
46
47
48
49
50
51
52
53
54
55
56
                    'limit_side_len': args.det_limit_side_len,
                    'limit_type': args.det_limit_type
                }
            }, {
                'NormalizeImage': {
                    'std': [0.229, 0.224, 0.225],
                    'mean': [0.485, 0.456, 0.406],
                    'scale': '1./255.',
                    'order': 'hwc'
                }
            }, {
                'ToCHWImage': None
            }, {
57
                'KeepKeys': {
WenmuZhou's avatar
WenmuZhou committed
58
59
60
61
                    'keep_keys': ['image', 'shape']
                }
            }]
            postprocess_params['name'] = 'DBPostProcess'
LDOUBLEV's avatar
LDOUBLEV committed
62
63
64
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
65
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
66
67
68
69
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

WenmuZhou's avatar
WenmuZhou committed
70
71
        self.preprocess_op = create_operators(pre_process_list)
        self.postprocess_op = build_post_process(postprocess_params)
72
73
74
        self.predictor, self.input_tensor, self.output_tensors = utility.create_predictor(
            args, 'det', logger)  # paddle.jit.load(args.det_model_dir)
        # self.predictor.eval()
LDOUBLEV's avatar
LDOUBLEV committed
75
76

    def order_points_clockwise(self, pts):
77
78
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
79
        # sort the points based on their x-coordinates
80
        """
LDOUBLEV's avatar
LDOUBLEV committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
100
    def clip_det_res(self, points, img_height, img_width):
101
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
102
103
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
104
105
106
107
108
109
110
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
111
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
115
116
117
118
119
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 10 or rect_height <= 10:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

120
121
122
123
124
125
126
127
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
128

LDOUBLEV's avatar
LDOUBLEV committed
129
130
    def __call__(self, img):
        ori_im = img.copy()
WenmuZhou's avatar
WenmuZhou committed
131
132
133
134
        data = {'image': img}
        data = transform(data, self.preprocess_op)
        img, shape_list = data
        if img is None:
LDOUBLEV's avatar
LDOUBLEV committed
135
            return None, 0
WenmuZhou's avatar
WenmuZhou committed
136
137
        img = np.expand_dims(img, axis=0)
        shape_list = np.expand_dims(shape_list, axis=0)
138
        img = img.copy()
LDOUBLEV's avatar
LDOUBLEV committed
139
        starttime = time.time()
140

141
142
143
144
145
146
147
148
149
150
151
152
153
        if self.use_zero_copy_run:
            self.input_tensor.copy_from_cpu(img)
            self.predictor.zero_copy_run()
        else:
            im = paddle.fluid.core.PaddleTensor(img)
            self.predictor.run([im])
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        preds = outputs[0]

        # preds = self.predictor(img)
WenmuZhou's avatar
WenmuZhou committed
154
155
156
        post_result = self.postprocess_op(preds, shape_list)
        dt_boxes = post_result[0]['points']
        dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
157
158
159
160
161
162
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
163
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
164
165
166
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
167
168
169
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
170
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
171
172
173
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
174
175
176
177
178
179
180
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
WenmuZhou's avatar
WenmuZhou committed
181
        logger.info("Predict time of {}: {}".format(image_file, elapse))
dyning's avatar
dyning committed
182
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
WenmuZhou's avatar
WenmuZhou committed
183
        img_name_pure = os.path.split(image_file)[-1]
WenmuZhou's avatar
WenmuZhou committed
184
185
        img_path = os.path.join(draw_img_save,
                                "det_res_{}".format(img_name_pure))
WenmuZhou's avatar
WenmuZhou committed
186
        cv2.imwrite(img_path, src_im)
WenmuZhou's avatar
WenmuZhou committed
187
        logger.info("The visualized image saved in {}".format(img_path))
188
    if count > 1:
WenmuZhou's avatar
WenmuZhou committed
189
        logger.info("Avg Time:", total_time / (count - 1))