dataset_traversal.py 12.6 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
tink2123's avatar
tink2123 committed
16
import sys
LDOUBLEV's avatar
LDOUBLEV committed
17
18
19
20
21
22
23
24
25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
tink2123's avatar
tink2123 committed
26
from ppocr.utils.utility import get_image_file_list
LDOUBLEV's avatar
LDOUBLEV committed
27
28
logger = initial_logger()

tink2123's avatar
tink2123 committed
29
from .img_tools import process_image, process_image_srn, get_img_data
LDOUBLEV's avatar
LDOUBLEV committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
44
        self.drop_last = False
tink2123's avatar
tink2123 committed
45
        self.use_tps = False
tink2123's avatar
tink2123 committed
46
47
48
        self.num_heads = None
        if "num_heads" in params:
            self.num_heads = params['num_heads']
tink2123's avatar
tink2123 committed
49
        if "tps" in params:
tink2123's avatar
tink2123 committed
50
            self.ues_tps = True
tink2123's avatar
tink2123 committed
51
        self.use_distort = False
tink2123's avatar
tink2123 committed
52
        if "distort" in params:
tink2123's avatar
tink2123 committed
53
54
55
56
57
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU. Distort will be set to False."
                )
LDOUBLEV's avatar
LDOUBLEV committed
58
59
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
60
            self.drop_last = True
tink2123's avatar
tink2123 committed
61
        else:
LDOUBLEV's avatar
LDOUBLEV committed
62
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
63
            self.drop_last = False
64
            self.use_distort = False
tink2123's avatar
tink2123 committed
65
66
        self.infer_img = params['infer_img']

LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
tink2123's avatar
tink2123 committed
119
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
120
121
122
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
123
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
124
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
125
126
127
128
129
                    if self.loss_type == 'srn':
                        norm_img = process_image_srn(
                            img=img,
                            image_shape=self.image_shape,
                            num_heads=self.num_heads,
tink2123's avatar
tink2123 committed
130
                            max_text_length=self.max_text_length)
tink2123's avatar
tink2123 committed
131
132
133
134
135
136
137
                    else:
                        norm_img = process_image(
                            img=img,
                            image_shape=self.image_shape,
                            char_ops=self.char_ops,
                            tps=self.use_tps,
                            infer_mode=True)
tink2123's avatar
tink2123 committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
tink2123's avatar
tink2123 committed
157
158
                            outs = []
                            if self.loss_type == "srn":
tink2123's avatar
tink2123 committed
159
                                outs = process_image_srn(
tink2123's avatar
tink2123 committed
160
161
162
163
164
165
166
                                    img=img,
                                    image_shape=self.image_shape,
                                    num_heads=self.num_heads,
                                    max_text_length=self.max_text_length,
                                    label=label,
                                    char_ops=self.char_ops,
                                    loss_type=self.loss_type)
tink2123's avatar
tink2123 committed
167
168

                            else:
tink2123's avatar
tink2123 committed
169
                                outs = process_image(
tink2123's avatar
tink2123 committed
170
171
172
173
174
175
                                    img=img,
                                    image_shape=self.image_shape,
                                    label=label,
                                    char_ops=self.char_ops,
                                    loss_type=self.loss_type,
                                    max_text_length=self.max_text_length)
tink2123's avatar
tink2123 committed
176
177
178
179
180
181
182
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
tink2123's avatar
tink2123 committed
183

LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
187
188
189
190
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
191
192
193
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
194

tink2123's avatar
tink2123 committed
195
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
196
197
            return batch_iter_reader
        return sample_iter_reader
LDOUBLEV's avatar
LDOUBLEV committed
198
199
200
201
202
203
204
205


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
tink2123's avatar
tink2123 committed
206
207
208
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
tink2123's avatar
tink2123 committed
209
        self.use_gpu = params['use_gpu']
LDOUBLEV's avatar
LDOUBLEV committed
210
211
212
213
214
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
tink2123's avatar
tink2123 committed
215
        self.infer_img = params['infer_img']
tink2123's avatar
tink2123 committed
216
        self.use_tps = False
tink2123's avatar
tink2123 committed
217
        if "tps" in params:
tink2123's avatar
tink2123 committed
218
            self.use_tps = True
tink2123's avatar
tink2123 committed
219
        self.use_distort = False
tink2123's avatar
tink2123 committed
220
        if "distort" in params:
tink2123's avatar
tink2123 committed
221
222
223
224
225
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU.Distort will be set to False."
                )
LDOUBLEV's avatar
LDOUBLEV committed
226
227
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
tink2123's avatar
tink2123 committed
228
            self.drop_last = True
LDOUBLEV's avatar
LDOUBLEV committed
229
        else:
tink2123's avatar
tink2123 committed
230
            self.batch_size = params['test_batch_size_per_card']
tink2123's avatar
tink2123 committed
231
            self.drop_last = False
232
            self.use_distort = False
LDOUBLEV's avatar
LDOUBLEV committed
233
234
235
236
237

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

tink2123's avatar
tink2123 committed
238
239
240
241
242
243
244
245
246
        def get_device_num():
            if self.use_gpu:
                gpus = os.environ.get("CUDA_VISIBLE_DEVICES", 1)
                gpu_num = len(gpus.split(','))
                return gpu_num
            else:
                cpu_num = os.environ.get("CPU_NUM", 1)
                return int(cpu_num)

LDOUBLEV's avatar
LDOUBLEV committed
247
        def sample_iter_reader():
tink2123's avatar
tink2123 committed
248
            if self.mode != 'train' and self.infer_img is not None:
tink2123's avatar
tink2123 committed
249
                image_file_list = get_image_file_list(self.infer_img)
tink2123's avatar
tink2123 committed
250
251
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
tink2123's avatar
tink2123 committed
252
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
253
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
tink2123's avatar
tink2123 committed
254
255
256
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
tink2123's avatar
tink2123 committed
257
                        char_ops=self.char_ops,
tink2123's avatar
tink2123 committed
258
                        tps=self.use_tps,
tink2123's avatar
tink2123 committed
259
                        infer_mode=True)
tink2123's avatar
tink2123 committed
260
                    yield norm_img
tink2123's avatar
tink2123 committed
261
262
263
264
265
266
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
littletomatodonkey's avatar
littletomatodonkey committed
267
                if sys.platform == "win32" and self.num_workers != 1:
tink2123's avatar
tink2123 committed
268
269
270
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
littletomatodonkey's avatar
littletomatodonkey committed
271
272
                if self.batch_size * get_device_num(
                ) * self.num_workers > img_num:
tink2123's avatar
tink2123 committed
273
                    raise Exception(
littletomatodonkey's avatar
littletomatodonkey committed
274
275
276
                        "The number of the whole data ({}) is smaller than the batch_size * devices_num * num_workers ({})".
                        format(img_num, self.batch_size * get_device_num() *
                               self.num_workers))
tink2123's avatar
tink2123 committed
277
278
279
280
281
282
283
284
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
tink2123's avatar
tink2123 committed
285
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
tink2123's avatar
tink2123 committed
286
287
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

tink2123's avatar
tink2123 committed
288
                    label = substr[1]
tink2123's avatar
tink2123 committed
289
290
291
292
293
294
295
296
                    outs = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        label=label,
                        char_ops=self.char_ops,
                        loss_type=self.loss_type,
                        max_text_length=self.max_text_length,
                        distort=self.use_distort)
tink2123's avatar
tink2123 committed
297
298
299
                    if outs is None:
                        continue
                    yield outs
LDOUBLEV's avatar
LDOUBLEV committed
300
301
302
303
304
305
306
307

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
tink2123's avatar
tink2123 committed
308
309
310
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
LDOUBLEV's avatar
LDOUBLEV committed
311

tink2123's avatar
tink2123 committed
312
        if self.infer_img is None:
tink2123's avatar
tink2123 committed
313
314
            return batch_iter_reader
        return sample_iter_reader