ocr_rec.cpp 6.66 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
WenmuZhou's avatar
WenmuZhou committed
20
                         cv::Mat &img, Classifier *cls) {
littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
25
26
27
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
littletomatodonkey's avatar
littletomatodonkey committed
28
  for (int i = 0; i < boxes.size(); i++) {
littletomatodonkey's avatar
littletomatodonkey committed
29
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
littletomatodonkey's avatar
littletomatodonkey committed
30

WenmuZhou's avatar
WenmuZhou committed
31
32
33
    if (cls != nullptr) {
      crop_img = cls->Run(crop_img);
    }
littletomatodonkey's avatar
littletomatodonkey committed
34
35
36

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

root's avatar
root committed
37
    this->resize_op_.Run(crop_img, resize_img, wh_ratio, this->use_tensorrt_);
littletomatodonkey's avatar
littletomatodonkey committed
38
39
40
41

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey committed
42
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey committed
43

littletomatodonkey's avatar
littletomatodonkey committed
44
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey committed
45

46
    // Inference.
LDOUBLEV's avatar
LDOUBLEV committed
47
48
49
50
51
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();
littletomatodonkey's avatar
littletomatodonkey committed
52

WenmuZhou's avatar
WenmuZhou committed
53
    std::vector<float> predict_batch;
littletomatodonkey's avatar
littletomatodonkey committed
54
    auto output_names = this->predictor_->GetOutputNames();
LDOUBLEV's avatar
LDOUBLEV committed
55
    auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
WenmuZhou's avatar
WenmuZhou committed
56
    auto predict_shape = output_t->shape();
57

WenmuZhou's avatar
WenmuZhou committed
58
    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
littletomatodonkey's avatar
littletomatodonkey committed
59
                                  std::multiplies<int>());
WenmuZhou's avatar
WenmuZhou committed
60
    predict_batch.resize(out_num);
littletomatodonkey's avatar
littletomatodonkey committed
61

LDOUBLEV's avatar
LDOUBLEV committed
62
    output_t->CopyToCpu(predict_batch.data());
littletomatodonkey's avatar
littletomatodonkey committed
63

WenmuZhou's avatar
WenmuZhou committed
64
65
    // ctc decode
    std::vector<std::string> str_res;
littletomatodonkey's avatar
littletomatodonkey committed
66
    int argmax_idx;
WenmuZhou's avatar
WenmuZhou committed
67
    int last_index = 0;
littletomatodonkey's avatar
littletomatodonkey committed
68
69
70
71
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

WenmuZhou's avatar
WenmuZhou committed
72
    for (int n = 0; n < predict_shape[1]; n++) {
littletomatodonkey's avatar
littletomatodonkey committed
73
      argmax_idx =
WenmuZhou's avatar
WenmuZhou committed
74
75
          int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                              &predict_batch[(n + 1) * predict_shape[2]]));
littletomatodonkey's avatar
littletomatodonkey committed
76
      max_value =
WenmuZhou's avatar
WenmuZhou committed
77
78
79
          float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                  &predict_batch[(n + 1) * predict_shape[2]]));

Double_V's avatar
Double_V committed
80
      if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
littletomatodonkey's avatar
littletomatodonkey committed
81
82
        score += max_value;
        count += 1;
WenmuZhou's avatar
WenmuZhou committed
83
        str_res.push_back(label_list_[argmax_idx]);
littletomatodonkey's avatar
littletomatodonkey committed
84
      }
WenmuZhou's avatar
WenmuZhou committed
85
      last_index = argmax_idx;
littletomatodonkey's avatar
littletomatodonkey committed
86
87
    }
    score /= count;
WenmuZhou's avatar
WenmuZhou committed
88
89
90
    for (int i = 0; i < str_res.size(); i++) {
      std::cout << str_res[i];
    }
littletomatodonkey's avatar
littletomatodonkey committed
91
92
93
94
    std::cout << "\tscore: " << score << std::endl;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
95
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
96
97
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
98
99
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
100

littletomatodonkey's avatar
littletomatodonkey committed
101
102
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
103
104
105
106
107
108
    if (this->use_tensorrt_) {
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
          this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
                          : paddle_infer::Config::Precision::kFloat32,
          false, false);
LDOUBLEV's avatar
LDOUBLEV committed
109
110
111
112
113
114
115
116
117
      std::map<std::string, std::vector<int>> min_input_shape = {
          {"x", {1, 3, 32, 10}}};
      std::map<std::string, std::vector<int>> max_input_shape = {
          {"x", {1, 3, 32, 2000}}};
      std::map<std::string, std::vector<int>> opt_input_shape = {
          {"x", {1, 3, 32, 320}}};

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
118
    }
littletomatodonkey's avatar
littletomatodonkey committed
119
120
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
121
122
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
123
124
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
125
    }
littletomatodonkey's avatar
littletomatodonkey committed
126
127
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
128

LDOUBLEV's avatar
LDOUBLEV committed
129
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
130
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
131
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
132
133
134
135

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
136
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
137

LDOUBLEV's avatar
LDOUBLEV committed
138
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
139
140
}

littletomatodonkey's avatar
littletomatodonkey committed
141
142
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
196
} // namespace PaddleOCR