test.sh 21.1 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
#!/bin/bash
FILENAME=$1
MissPenguin's avatar
MissPenguin committed
3
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
LDOUBLEV's avatar
LDOUBLEV committed
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
function func_parser_params(){
    strs=$1
    IFS=":"
    array=(${strs})
    key=${array[0]}
    tmp=${array[1]}
    IFS="|"
    res=""
    for _params in ${tmp[*]}; do
        IFS="="
        array=(${_params})
        mode=${array[0]}
        value=${array[1]}
        if [[ ${mode} = ${MODE} ]]; then
            IFS="|"
LDOUBLEV's avatar
LDOUBLEV committed
52
            #echo $(func_set_params "${mode}" "${value}")
LDOUBLEV's avatar
LDOUBLEV committed
53
            echo $value
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
            break
        fi
        IFS="|"
    done
    echo ${res}
}
LDOUBLEV's avatar
LDOUBLEV committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
LDOUBLEV's avatar
LDOUBLEV committed
76
77
78
79
80
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
LDOUBLEV's avatar
LDOUBLEV committed
81
epoch_num=$(func_parser_params "${lines[6]}")
LDOUBLEV's avatar
LDOUBLEV committed
82
83
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
LDOUBLEV's avatar
LDOUBLEV committed
84
train_batch_value=$(func_parser_params "${lines[8]}")
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
LDOUBLEV's avatar
LDOUBLEV committed
103
trainer_key2=$(func_parser_key "${lines[20]}")
LDOUBLEV's avatar
LDOUBLEV committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# parser inference model 
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference 
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
LDOUBLEV's avatar
LDOUBLEV committed
147

MissPenguin's avatar
refine  
MissPenguin committed
148
149
if [ ${MODE} = "cpp_infer" ]; then
    # parser cpp inference model 
MissPenguin's avatar
refine  
MissPenguin committed
150
151
    cpp_infer_model_dir_list=$(func_parser_value "${lines[53]}")
    cpp_infer_is_quant=$(func_parser_value "${lines[54]}")
MissPenguin's avatar
refine  
MissPenguin committed
152
    # parser cpp inference 
MissPenguin's avatar
refine  
MissPenguin committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    inference_cmd=$(func_parser_value "${lines[55]}")
    cpp_use_gpu_key=$(func_parser_key "${lines[56]}")
    cpp_use_gpu_list=$(func_parser_value "${lines[56]}")
    cpp_use_mkldnn_key=$(func_parser_key "${lines[57]}")
    cpp_use_mkldnn_list=$(func_parser_value "${lines[57]}")
    cpp_cpu_threads_key=$(func_parser_key "${lines[58]}")
    cpp_cpu_threads_list=$(func_parser_value "${lines[58]}")
    cpp_batch_size_key=$(func_parser_key "${lines[59]}")
    cpp_batch_size_list=$(func_parser_value "${lines[59]}")
    cpp_use_trt_key=$(func_parser_key "${lines[60]}")
    cpp_use_trt_list=$(func_parser_value "${lines[60]}")
    cpp_precision_key=$(func_parser_key "${lines[61]}")
    cpp_precision_list=$(func_parser_value "${lines[61]}")
    cpp_infer_model_key=$(func_parser_key "${lines[62]}")
    cpp_image_dir_key=$(func_parser_key "${lines[63]}")
    cpp_infer_img_dir=$(func_parser_value "${lines[63]}")
    cpp_save_log_key=$(func_parser_key "${lines[64]}")
    cpp_benchmark_key=$(func_parser_key "${lines[65]}")
    cpp_benchmark_value=$(func_parser_value "${lines[65]}")
MissPenguin's avatar
refine  
MissPenguin committed
172
fi
MissPenguin's avatar
MissPenguin committed
173
174


LDOUBLEV's avatar
LDOUBLEV committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
LDOUBLEV's avatar
LDOUBLEV committed
190
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
191
            for use_mkldnn in ${use_mkldnn_list[*]}; do
192
193
194
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
LDOUBLEV's avatar
LDOUBLEV committed
195
196
197
198
199
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
LDOUBLEV's avatar
LDOUBLEV committed
200
201
202
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
203
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
Double_V's avatar
Double_V committed
204
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
LDOUBLEV's avatar
LDOUBLEV committed
205
                        eval $command
Double_V's avatar
Double_V committed
206
207
208
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
LDOUBLEV's avatar
LDOUBLEV committed
209
210
211
                    done
                done
            done
LDOUBLEV's avatar
LDOUBLEV committed
212
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
213
214
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
215
216
217
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
218
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
219
220
                        continue
                    fi
221
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
222
223
224
225
226
227
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
LDOUBLEV's avatar
LDOUBLEV committed
228
229
230
231
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
LDOUBLEV's avatar
LDOUBLEV committed
232
233
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
LDOUBLEV's avatar
LDOUBLEV committed
234
                        eval $command
Double_V's avatar
Double_V committed
235
236
237
238
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
LDOUBLEV's avatar
LDOUBLEV committed
239
240
241
                    done
                done
            done
LDOUBLEV's avatar
LDOUBLEV committed
242
        else
243
            echo "Does not support hardware other than CPU and GPU Currently!"
LDOUBLEV's avatar
LDOUBLEV committed
244
245
246
247
        fi
    done
}

MissPenguin's avatar
MissPenguin committed
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
function func_cpp_inference(){
    IFS='|'
    _script=$1
    _model_dir=$2
    _log_path=$3
    _img_dir=$4
    _flag_quant=$5
    # inference 
    for use_gpu in ${cpp_use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpp_cpu_threads_list[*]}; do
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${cpp_use_trt_list[*]}; do
                for precision in ${cpp_precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

LDOUBLEV's avatar
LDOUBLEV committed
313
if [ ${MODE} = "infer" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
314
315
316
317
318
319
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
320
321
322
323
324
325
326
327
328
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
LDOUBLEV's avatar
LDOUBLEV committed
329
            save_infer_dir=$(dirname $infer_model)
LDOUBLEV's avatar
LDOUBLEV committed
330
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
LDOUBLEV's avatar
LDOUBLEV committed
331
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
LDOUBLEV's avatar
LDOUBLEV committed
332
            export_cmd="${python} ${norm_export} ${set_export_weight} ${set_save_infer_key}"
333
334
            eval $export_cmd
            status_export=$?
335
            status_check $status_export "${export_cmd}" "${status_log}"
LDOUBLEV's avatar
fix  
LDOUBLEV committed
336
        else
LDOUBLEV's avatar
LDOUBLEV committed
337
            save_infer_dir=${infer_model}
338
339
340
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
LDOUBLEV's avatar
LDOUBLEV committed
341
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
342
343
        Count=$(($Count + 1))
    done
LDOUBLEV's avatar
LDOUBLEV committed
344

MissPenguin's avatar
MissPenguin committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
elif [ ${MODE} = "cpp_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_quant_flag=(${cpp_infer_is_quant})
    for infer_model in ${cpp_infer_model_dir_list[*]}; do
        #run inference
        is_quant=${infer_quant_flag[Count]}
        func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
        Count=$(($Count + 1))
    done

LDOUBLEV's avatar
LDOUBLEV committed
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
else
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
        use_gpu=${USE_GPU_KEY[Count]}
        Count=$(($Count + 1))
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do 
            for trainer in ${trainer_list[*]}; do 
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi
                
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
                
                # load pretrain from norm training if current trainer is pact or fpgm trainer
                if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
                    set_pretrain="${load_norm_train_model}"
                fi

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
                elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                else     # train with multi-machine
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                fi
                # run train
                eval "unset CUDA_VISIBLE_DEVICES"
                eval $cmd
                status_check $? "${cmd}" "${status_log}"

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
                # save norm trained models to set pretrain for pact training and fpgm training 
                if [ ${trainer} = ${trainer_norm} ]; then
                    load_norm_train_model=${set_eval_pretrain}
                fi
                # run eval 
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
                if [ ${run_export} != "null" ]; then 
                    # run export model
                    save_infer_path="${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
459
460
461
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
LDOUBLEV's avatar
LDOUBLEV committed
462
463
464
465
466
467
468
469
470
471
472
473
474
                    eval $export_cmd
                    status_check $? "${export_cmd}" "${status_log}"

                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
                    func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do 
        done      # done with:    for autocast in ${autocast_list[*]}; do 
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then