test.sh 12.1 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_value "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_value "${lines[8]}")
LDOUBLEV's avatar
LDOUBLEV committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key1=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

inference_py=$(func_parser_value "${lines[36]}")
use_gpu_key=$(func_parser_key "${lines[37]}")
use_gpu_list=$(func_parser_value "${lines[37]}")
use_mkldnn_key=$(func_parser_key "${lines[38]}")
use_mkldnn_list=$(func_parser_value "${lines[38]}")
cpu_threads_key=$(func_parser_key "${lines[39]}")
cpu_threads_list=$(func_parser_value "${lines[39]}")
batch_size_key=$(func_parser_key "${lines[40]}")
batch_size_list=$(func_parser_value "${lines[40]}")
use_trt_key=$(func_parser_key "${lines[41]}")
use_trt_list=$(func_parser_value "${lines[41]}")
precision_key=$(func_parser_key "${lines[42]}")
precision_list=$(func_parser_value "${lines[42]}")
infer_model_key=$(func_parser_key "${lines[43]}")
infer_model=$(func_parser_value "${lines[43]}")
image_dir_key=$(func_parser_key "${lines[44]}")
infer_img_dir=$(func_parser_value "${lines[44]}")
save_log_key=$(func_parser_key "${lines[45]}")
benchmark_key=$(func_parser_key "${lines[46]}")
benchmark_value=$(func_parser_value "${lines[46]}")
infer_key2=$(func_parser_key "${lines[47]}")
infer_value2=$(func_parser_value "${lines[47]}")

LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
LDOUBLEV's avatar
LDOUBLEV committed
136
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
137
            for use_mkldnn in ${use_mkldnn_list[*]}; do
138
139
140
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
LDOUBLEV's avatar
LDOUBLEV committed
141
142
143
144
145
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
LDOUBLEV's avatar
LDOUBLEV committed
146
147
148
149
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
LDOUBLEV's avatar
LDOUBLEV committed
150
151
152
153
154
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
LDOUBLEV's avatar
LDOUBLEV committed
155
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                        continue
                    fi
                    if [ ${use_trt} = "False" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    if [ ${precision} != "int8" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
LDOUBLEV's avatar
LDOUBLEV committed
171
172
173
174
175
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
LDOUBLEV's avatar
LDOUBLEV committed
176
177
178
179
180
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
LDOUBLEV's avatar
LDOUBLEV committed
181
182
        else
            echo "Currently does not support hardware other than CPU and GPU"
LDOUBLEV's avatar
LDOUBLEV committed
183
184
185
186
187
188
189
        fi
    done
}

if [ ${MODE} != "infer" ]; then

IFS="|"
LDOUBLEV's avatar
LDOUBLEV committed
190
191
export Count=0
USE_GPU_KEY=(${train_use_gpu_value})
LDOUBLEV's avatar
LDOUBLEV committed
192
for gpu in ${gpu_list[*]}; do
LDOUBLEV's avatar
LDOUBLEV committed
193
194
    use_gpu=${USE_GPU_KEY[Count]}
    Count=$(($Count + 1))
LDOUBLEV's avatar
LDOUBLEV committed
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    if [ ${gpu} = "-1" ];then
        env=""
    elif [ ${#gpu} -le 1 ];then
        env="export CUDA_VISIBLE_DEVICES=${gpu}"
        eval ${env}
    elif [ ${#gpu} -le 15 ];then
        IFS=","
        array=(${gpu})
        env="export CUDA_VISIBLE_DEVICES=${array[0]}"
        IFS="|"
    else
        IFS=";"
        array=(${gpu})
        ips=${array[0]}
        gpu=${array[1]}
        IFS="|"
        env=" "
    fi
    for autocast in ${autocast_list[*]}; do 
        for trainer in ${trainer_list[*]}; do 
            flag_quant=False
            if [ ${trainer} = ${pact_key} ]; then
                run_train=${pact_trainer}
                run_export=${pact_export}
                flag_quant=True
            elif [ ${trainer} = "${fpgm_key}" ]; then
                run_train=${fpgm_trainer}
                run_export=${fpgm_export}
            elif [ ${trainer} = "${distill_key}" ]; then
                run_train=${distill_trainer}
                run_export=${distill_export}
            elif [ ${trainer} = ${trainer_key1} ]; then
                run_train=${trainer_value1}
                run_export=${export_value1}
            elif [[ ${trainer} = ${trainer_key2} ]]; then
                run_train=${trainer_value2}
                run_export=${export_value2}
            else
                run_train=${norm_trainer}
                run_export=${norm_export}
            fi

            if [ ${run_train} = "null" ]; then
                continue
            fi
            
            set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
LDOUBLEV's avatar
LDOUBLEV committed
242
            set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
LDOUBLEV's avatar
LDOUBLEV committed
243
244
245
            set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
            set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
            set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
LDOUBLEV's avatar
LDOUBLEV committed
246
            set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
LDOUBLEV's avatar
LDOUBLEV committed
247
            save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
LDOUBLEV's avatar
LDOUBLEV committed
248
249

            set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
LDOUBLEV's avatar
LDOUBLEV committed
250
            if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
LDOUBLEV's avatar
LDOUBLEV committed
251
                cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
LDOUBLEV's avatar
LDOUBLEV committed
252
            elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
LDOUBLEV's avatar
LDOUBLEV committed
253
                cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
LDOUBLEV's avatar
LDOUBLEV committed
254
            else     # train with multi-machine
LDOUBLEV's avatar
LDOUBLEV committed
255
                cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
LDOUBLEV's avatar
LDOUBLEV committed
256
257
            fi
            # run train
258
            eval "unset CUDA_VISIBLE_DEVICES"
LDOUBLEV's avatar
LDOUBLEV committed
259
260
261
            eval $cmd
            status_check $? "${cmd}" "${status_log}"

LDOUBLEV's avatar
LDOUBLEV committed
262
            set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
LDOUBLEV's avatar
LDOUBLEV committed
263
264
            # run eval 
            if [ ${eval_py} != "null" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
265
                eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu}" 
LDOUBLEV's avatar
LDOUBLEV committed
266
267
268
269
270
271
272
                eval $eval_cmd
                status_check $? "${eval_cmd}" "${status_log}"
            fi

            if [ ${run_export} != "null" ]; then 
                # run export model
                save_infer_path="${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
273
                export_cmd="${python} ${run_export} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}"
LDOUBLEV's avatar
LDOUBLEV committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
                eval $export_cmd
                status_check $? "${export_cmd}" "${status_log}"

                #run inference
                eval $env
                save_infer_path="${save_log}"
                func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                eval "unset CUDA_VISIBLE_DEVICES"
            fi
        done
    done
done

else
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    echo $env
    #run inference
    func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" "False"
fi