test.sh 11.2 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
autocast_list=$(func_parser_value "${lines[4]}")
autocast_key=$(func_parser_key "${lines[4]}")
epoch_key=$(func_parser_key "${lines[5]}")
epoch_num=$(func_parser_value "${lines[5]}")
save_model_key=$(func_parser_key "${lines[6]}")
train_batch_key=$(func_parser_key "${lines[7]}")
train_batch_value=$(func_parser_value "${lines[7]}")
train_use_gpu_key=$(func_parser_key "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key1=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

inference_py=$(func_parser_value "${lines[36]}")
use_gpu_key=$(func_parser_key "${lines[37]}")
use_gpu_list=$(func_parser_value "${lines[37]}")
use_mkldnn_key=$(func_parser_key "${lines[38]}")
use_mkldnn_list=$(func_parser_value "${lines[38]}")
cpu_threads_key=$(func_parser_key "${lines[39]}")
cpu_threads_list=$(func_parser_value "${lines[39]}")
batch_size_key=$(func_parser_key "${lines[40]}")
batch_size_list=$(func_parser_value "${lines[40]}")
use_trt_key=$(func_parser_key "${lines[41]}")
use_trt_list=$(func_parser_value "${lines[41]}")
precision_key=$(func_parser_key "${lines[42]}")
precision_list=$(func_parser_value "${lines[42]}")
infer_model_key=$(func_parser_key "${lines[43]}")
infer_model=$(func_parser_value "${lines[43]}")
image_dir_key=$(func_parser_key "${lines[44]}")
infer_img_dir=$(func_parser_value "${lines[44]}")
save_log_key=$(func_parser_key "${lines[45]}")
benchmark_key=$(func_parser_key "${lines[46]}")
benchmark_value=$(func_parser_value "${lines[46]}")
infer_key2=$(func_parser_key "${lines[47]}")
infer_value2=$(func_parser_value "${lines[47]}")

LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ]; then
            for use_mkldnn in ${use_mkldnn_list[*]}; do
137
138
139
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
LDOUBLEV's avatar
LDOUBLEV committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        #${image_dir_key}=${_img_dir}  ${save_log_key}=${_save_log_path} --benchmark=True
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${cpu_threads_key}=${threads} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
        else
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
                    if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then
                        continue
                    fi
                    if [ ${use_trt} = "False" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    if [ ${precision} != "int8" ] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_trt_key}=${use_trt} ${precision_key}=${precision} ${infer_model_key}=${_model_dir} ${batch_size_key}=${batch_size} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
                        eval $command
                        status_check $? "${command}" "${status_log}"
                    done
                done
            done
        fi
    done
}

if [ ${MODE} != "infer" ]; then

IFS="|"
for gpu in ${gpu_list[*]}; do
    use_gpu=True
    if [ ${gpu} = "-1" ];then
        use_gpu=False
        env=""
    elif [ ${#gpu} -le 1 ];then
        env="export CUDA_VISIBLE_DEVICES=${gpu}"
        eval ${env}
    elif [ ${#gpu} -le 15 ];then
        IFS=","
        array=(${gpu})
        env="export CUDA_VISIBLE_DEVICES=${array[0]}"
        IFS="|"
    else
        IFS=";"
        array=(${gpu})
        ips=${array[0]}
        gpu=${array[1]}
        IFS="|"
        env=" "
    fi
    for autocast in ${autocast_list[*]}; do 
        for trainer in ${trainer_list[*]}; do 
            flag_quant=False
            if [ ${trainer} = ${pact_key} ]; then
                run_train=${pact_trainer}
                run_export=${pact_export}
                flag_quant=True
            elif [ ${trainer} = "${fpgm_key}" ]; then
                run_train=${fpgm_trainer}
                run_export=${fpgm_export}
            elif [ ${trainer} = "${distill_key}" ]; then
                run_train=${distill_trainer}
                run_export=${distill_export}
            elif [ ${trainer} = ${trainer_key1} ]; then
                run_train=${trainer_value1}
                run_export=${export_value1}
            elif [[ ${trainer} = ${trainer_key2} ]]; then
                run_train=${trainer_value2}
                run_export=${export_value2}
            else
                run_train=${norm_trainer}
                run_export=${norm_export}
            fi

            if [ ${run_train} = "null" ]; then
                continue
            fi
            
            set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
            set_autocast=$(func_set_params "${epoch_key}" "${epoch_num}")
            set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
            set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
            set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")

            save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
            if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
                cmd="${python} ${run_train} ${train_use_gpu_key}=${use_gpu}  ${save_model_key}=${save_log} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
            elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
                cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${save_model_key}=${save_log}  ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
            else     # train with multi-machine
                cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${save_model_key}=${save_log} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
            fi
            # run train
            eval $cmd
            status_check $? "${cmd}" "${status_log}"

            # run eval 
            if [ ${eval_py} != "null" ]; then
                eval_cmd="${python} ${eval_py} ${save_model_key}=${save_log} ${pretrain_model_key}=${save_log}/${train_model_name}" 
                eval $eval_cmd
                status_check $? "${eval_cmd}" "${status_log}"
            fi

            if [ ${run_export} != "null" ]; then 
                # run export model
                save_infer_path="${save_log}"
                export_cmd="${python} ${run_export} ${save_model_key}=${save_log} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}"
                eval $export_cmd
                status_check $? "${export_cmd}" "${status_log}"

                #run inference
                eval $env
                save_infer_path="${save_log}"
                func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                eval "unset CUDA_VISIBLE_DEVICES"
            fi
        done
    done
done

else
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    echo $env
    #run inference
    func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" "False"
fi