test.sh 28.7 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
#!/bin/bash
FILENAME=$1
LDOUBLEV's avatar
LDOUBLEV committed
3
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer', 'serving_infer', 'klquant_infer']
LDOUBLEV's avatar
LDOUBLEV committed
4
MODE=$2
LDOUBLEV's avatar
LDOUBLEV committed
5
6
7
8
9
10
11
12
13
if [ ${MODE} = "cpp_infer" ]; then
    dataline=$(awk 'NR==67, NR==81{print}'  $FILENAME)
elif [ ${MODE} = "serving_infer" ]; then
    dataline=$(awk 'NR==52, NR==66{print}'  $FILENAME)
elif [ ${MODE} = "klquant_infer" ]; then
    dataline=$(awk 'NR==82, NR==98{print}'  $FILENAME)
else
    dataline=$(awk 'NR==1, NR==51{print}'  $FILENAME)
fi
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else 
        echo "${key}=${value}"
    fi
}
LDOUBLEV's avatar
LDOUBLEV committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
function func_parser_params(){
    strs=$1
    IFS=":"
    array=(${strs})
    key=${array[0]}
    tmp=${array[1]}
    IFS="|"
    res=""
    for _params in ${tmp[*]}; do
        IFS="="
        array=(${_params})
        mode=${array[0]}
        value=${array[1]}
        if [[ ${mode} = ${MODE} ]]; then
            IFS="|"
LDOUBLEV's avatar
LDOUBLEV committed
59
            #echo $(func_set_params "${mode}" "${value}")
LDOUBLEV's avatar
LDOUBLEV committed
60
            echo $value
LDOUBLEV's avatar
LDOUBLEV committed
61
62
63
64
65
66
            break
        fi
        IFS="|"
    done
    echo ${res}
}
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
LDOUBLEV's avatar
LDOUBLEV committed
83
84
85
86
87
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
LDOUBLEV's avatar
LDOUBLEV committed
88
epoch_num=$(func_parser_params "${lines[6]}")
LDOUBLEV's avatar
LDOUBLEV committed
89
90
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
LDOUBLEV's avatar
LDOUBLEV committed
91
train_batch_value=$(func_parser_params "${lines[8]}")
LDOUBLEV's avatar
LDOUBLEV committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
LDOUBLEV's avatar
LDOUBLEV committed
110
trainer_key2=$(func_parser_key "${lines[20]}")
LDOUBLEV's avatar
LDOUBLEV committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# parser inference model 
infer_model_dir_list=$(func_parser_value "${lines[36]}")
infer_export_list=$(func_parser_value "${lines[37]}")
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference 
inference_py=$(func_parser_value "${lines[39]}")
use_gpu_key=$(func_parser_key "${lines[40]}")
use_gpu_list=$(func_parser_value "${lines[40]}")
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
154

LDOUBLEV's avatar
LDOUBLEV committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# parser serving
if [ ${MODE} = "klquant_infer" ]; then
    # parser inference model 
    infer_model_dir_list=$(func_parser_value "${lines[1]}")
    infer_export_list=$(func_parser_value "${lines[2]}")
    infer_is_quant=$(func_parser_value "${lines[3]}")
    # parser inference 
    inference_py=$(func_parser_value "${lines[4]}")
    use_gpu_key=$(func_parser_key "${lines[5]}")
    use_gpu_list=$(func_parser_value "${lines[5]}")
    use_mkldnn_key=$(func_parser_key "${lines[6]}")
    use_mkldnn_list=$(func_parser_value "${lines[6]}")
    cpu_threads_key=$(func_parser_key "${lines[7]}")
    cpu_threads_list=$(func_parser_value "${lines[7]}")
    batch_size_key=$(func_parser_key "${lines[8]}")
    batch_size_list=$(func_parser_value "${lines[8]}")
    use_trt_key=$(func_parser_key "${lines[9]}")
    use_trt_list=$(func_parser_value "${lines[9]}")
    precision_key=$(func_parser_key "${lines[10]}")
    precision_list=$(func_parser_value "${lines[10]}")
    infer_model_key=$(func_parser_key "${lines[11]}")
    image_dir_key=$(func_parser_key "${lines[12]}")
    infer_img_dir=$(func_parser_value "${lines[12]}")
    save_log_key=$(func_parser_key "${lines[13]}")
    benchmark_key=$(func_parser_key "${lines[14]}")
    benchmark_value=$(func_parser_value "${lines[14]}")
    infer_key1=$(func_parser_key "${lines[15]}")
    infer_value1=$(func_parser_value "${lines[15]}")
fi
# parser serving
if [ ${MODE} = "server_infer" ]; then
    trans_model_py=$(func_parser_value "${lines[1]}")
    infer_model_dir_key=$(func_parser_key "${lines[2]}")
    infer_model_dir_value=$(func_parser_value "${lines[2]}")
    model_filename_key=$(func_parser_key "${lines[3]}")
    model_filename_value=$(func_parser_value "${lines[3]}")
    params_filename_key=$(func_parser_key "${lines[4]}")
    params_filename_value=$(func_parser_value "${lines[4]}")
    serving_server_key=$(func_parser_key "${lines[5]}")
    serving_server_value=$(func_parser_value "${lines[5]}")
    serving_client_key=$(func_parser_key "${lines[6]}")
    serving_client_value=$(func_parser_value "${lines[6]}")
    serving_dir_value=$(func_parser_value "${lines[7]}")
    web_service_py=$(func_parser_value "${lines[8]}")
    web_use_gpu_key=$(func_parser_key "${lines[9]}")
    web_use_gpu_list=$(func_parser_value "${lines[9]}")
    web_use_mkldnn_key=$(func_parser_key "${lines[10]}")
    web_use_mkldnn_list=$(func_parser_value "${lines[10]}")
    web_cpu_threads_key=$(func_parser_key "${lines[11]}")
    web_cpu_threads_list=$(func_parser_value "${lines[11]}")
    web_use_trt_key=$(func_parser_key "${lines[12]}")
    web_use_trt_list=$(func_parser_value "${lines[12]}")
    web_precision_key=$(func_parser_key "${lines[13]}")
    web_precision_list=$(func_parser_value "${lines[13]}")
    pipeline_py=$(func_parser_value "${lines[14]}")
fi
LDOUBLEV's avatar
LDOUBLEV committed
211

MissPenguin's avatar
refine  
MissPenguin committed
212
213
if [ ${MODE} = "cpp_infer" ]; then
    # parser cpp inference model 
LDOUBLEV's avatar
LDOUBLEV committed
214
215
    cpp_infer_model_dir_list=$(func_parser_value "${lines[1]}")
    cpp_infer_is_quant=$(func_parser_value "${lines[2]}")
MissPenguin's avatar
refine  
MissPenguin committed
216
    # parser cpp inference 
LDOUBLEV's avatar
LDOUBLEV committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    inference_cmd=$(func_parser_value "${lines[3]}")
    cpp_use_gpu_key=$(func_parser_key "${lines[4]}")
    cpp_use_gpu_list=$(func_parser_value "${lines[4]}")
    cpp_use_mkldnn_key=$(func_parser_key "${lines[5]}")
    cpp_use_mkldnn_list=$(func_parser_value "${lines[5]}")
    cpp_cpu_threads_key=$(func_parser_key "${lines[6]}")
    cpp_cpu_threads_list=$(func_parser_value "${lines[6]}")
    cpp_batch_size_key=$(func_parser_key "${lines[7]}")
    cpp_batch_size_list=$(func_parser_value "${lines[7]}")
    cpp_use_trt_key=$(func_parser_key "${lines[8]}")
    cpp_use_trt_list=$(func_parser_value "${lines[8]}")
    cpp_precision_key=$(func_parser_key "${lines[9]}")
    cpp_precision_list=$(func_parser_value "${lines[9]}")
    cpp_infer_model_key=$(func_parser_key "${lines[10]}")
    cpp_image_dir_key=$(func_parser_key "${lines[11]}")
    cpp_infer_img_dir=$(func_parser_value "${lines[12]}")
    cpp_infer_key1=$(func_parser_key "${lines[13]}")
    cpp_infer_value1=$(func_parser_value "${lines[13]}")
    cpp_benchmark_key=$(func_parser_key "${lines[14]}")
    cpp_benchmark_value=$(func_parser_value "${lines[14]}")
MissPenguin's avatar
refine  
MissPenguin committed
237
fi
MissPenguin's avatar
MissPenguin committed
238
239


LDOUBLEV's avatar
LDOUBLEV committed
240

LDOUBLEV's avatar
LDOUBLEV committed
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference 
    for use_gpu in ${use_gpu_list[*]}; do
LDOUBLEV's avatar
LDOUBLEV committed
256
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
257
            for use_mkldnn in ${use_mkldnn_list[*]}; do
258
259
260
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
LDOUBLEV's avatar
LDOUBLEV committed
261
262
263
264
265
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
LDOUBLEV's avatar
LDOUBLEV committed
266
267
268
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
269
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
Double_V's avatar
Double_V committed
270
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
LDOUBLEV's avatar
LDOUBLEV committed
271
                        eval $command
Double_V's avatar
Double_V committed
272
273
274
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
LDOUBLEV's avatar
LDOUBLEV committed
275
276
277
                    done
                done
            done
LDOUBLEV's avatar
LDOUBLEV committed
278
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
279
280
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
281
282
283
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
284
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
285
286
                        continue
                    fi
287
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
288
289
290
291
292
293
                        continue
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
LDOUBLEV's avatar
LDOUBLEV committed
294
295
296
297
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
LDOUBLEV's avatar
LDOUBLEV committed
298
299
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
                        command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
LDOUBLEV's avatar
LDOUBLEV committed
300
                        eval $command
Double_V's avatar
Double_V committed
301
302
303
304
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
LDOUBLEV's avatar
LDOUBLEV committed
305
306
307
                    done
                done
            done
LDOUBLEV's avatar
LDOUBLEV committed
308
        else
309
            echo "Does not support hardware other than CPU and GPU Currently!"
LDOUBLEV's avatar
LDOUBLEV committed
310
311
312
        fi
    done
}
tink2123's avatar
tink2123 committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
function func_serving(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    # pdserving
    set_dirname=$(func_set_params "${infer_model_dir_key}" "${infer_model_dir_value}")
    set_model_filename=$(func_set_params "${model_filename_key}" "${model_filename_value}")
    set_params_filename=$(func_set_params "${params_filename_key}" "${params_filename_value}")
    set_serving_server=$(func_set_params "${serving_server_key}" "${serving_server_value}")
    set_serving_client=$(func_set_params "${serving_client_key}" "${serving_client_value}")
    trans_model_cmd="${python} ${trans_model_py} ${set_dirname} ${set_model_filename} ${set_params_filename} ${set_serving_server} ${set_serving_client}"
    eval $trans_model_cmd
    cd ${serving_dir_value}
    echo $PWD
tink2123's avatar
tink2123 committed
328
329
    unset https_proxy
    unset http_proxy
tink2123's avatar
tink2123 committed
330
331
332
333
334
335
336
337
338
339
    for use_gpu in ${web_use_gpu_list[*]}; do
        echo ${ues_gpu}
        if [ ${use_gpu} = "null" ]; then
            for use_mkldnn in ${web_use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ]; then
                    continue
                fi
                for threads in ${web_cpu_threads_list[*]}; do
                      _save_log_path="${_log_path}/server_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_1.log"
                      set_cpu_threads=$(func_set_params "${web_cpu_threads_key}" "${threads}")
tink2123's avatar
tink2123 committed
340
                      web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${web_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} &>${_save_log_path} &"
tink2123's avatar
tink2123 committed
341
                      eval $web_service_cmd
tink2123's avatar
tink2123 committed
342
343
344
345
346
347
348
349
350
351
                      sleep 2s
                      pipeline_cmd="${python} ${pipeline_py}"
                      eval $pipeline_cmd
                      last_status=${PIPESTATUS[0]}
                      eval "cat ${_save_log_path}"
                      status_check $last_status "${pipeline_cmd}" "${status_log}"
                      PID=$!
                      kill $PID
                      sleep 2s
                      ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
tink2123's avatar
tink2123 committed
352
353
354
355
356
357
358
359
360
361
362
                done
            done
        elif [ ${use_gpu} = "0" ]; then
            for use_trt in ${web_use_trt_list[*]}; do
                for precision in ${web_precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
tink2123's avatar
tink2123 committed
363
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [[ ${_flag_quant} = "True" ]]; then
tink2123's avatar
tink2123 committed
364
365
366
367
368
                        continue
                    fi
                    _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_1.log"
                    set_tensorrt=$(func_set_params "${web_use_trt_key}" "${use_trt}")
                    set_precision=$(func_set_params "${web_precision_key}" "${precision}")
tink2123's avatar
tink2123 committed
369
                    web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} &>${_save_log_path} & "
tink2123's avatar
tink2123 committed
370
                    eval $web_service_cmd
tink2123's avatar
tink2123 committed
371
372
373
374
375
376
377
378
379
380
                    sleep 2s
                    pipeline_cmd="${python} ${pipeline_py}"
                    eval $pipeline_cmd
                    last_status=${PIPESTATUS[0]}
                    eval "cat ${_save_log_path}"
                    status_check $last_status "${pipeline_cmd}" "${status_log}"
                    PID=$!
                    kill $PID
                    sleep 2s
                    ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
tink2123's avatar
tink2123 committed
381
382
383
384
385
386
387
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}
LDOUBLEV's avatar
LDOUBLEV committed
388

MissPenguin's avatar
MissPenguin committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
function func_cpp_inference(){
    IFS='|'
    _script=$1
    _model_dir=$2
    _log_path=$3
    _img_dir=$4
    _flag_quant=$5
    # inference 
    for use_gpu in ${cpp_use_gpu_list[*]}; do
        if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
            for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpp_cpu_threads_list[*]}; do
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
MissPenguin's avatar
MissPenguin committed
411
                        set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
MissPenguin's avatar
MissPenguin committed
412
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
MissPenguin's avatar
MissPenguin committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                    done
                done
            done
        elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
            for use_trt in ${cpp_use_trt_list[*]}; do
                for precision in ${cpp_precision_list[*]}; do
                    if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
                        continue
                    fi 
                    if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
                        continue
                    fi
                    if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
                        continue
                    fi
                    for batch_size in ${cpp_batch_size_list[*]}; do
                        _save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
                        set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
MissPenguin's avatar
MissPenguin committed
440
                        set_infer_params1=$(func_set_params "${cpp_infer_key1}" "${cpp_infer_value1}")
MissPenguin's avatar
MissPenguin committed
441
                        command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
MissPenguin's avatar
MissPenguin committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
                        eval $command
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
                        
                    done
                done
            done
        else
            echo "Does not support hardware other than CPU and GPU Currently!"
        fi
    done
}

LDOUBLEV's avatar
LDOUBLEV committed
456
if [ ${MODE} = "infer" ] || [ ${MODE} = "klquant_infer" ]; then
LDOUBLEV's avatar
LDOUBLEV committed
457
458
459
460
461
462
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
463
464
465
466
467
468
469
470
471
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_run_exports=(${infer_export_list})
    infer_quant_flag=(${infer_is_quant})
    for infer_model in ${infer_model_dir_list[*]}; do
        # run export
        if [ ${infer_run_exports[Count]} != "null" ];then
LDOUBLEV's avatar
LDOUBLEV committed
472
            save_infer_dir=$(dirname $infer_model)
LDOUBLEV's avatar
LDOUBLEV committed
473
            set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
LDOUBLEV's avatar
LDOUBLEV committed
474
            set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
475
476
477
            export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
            echo ${infer_run_exports[Count]} 
            echo  $export_cmd
478
479
            eval $export_cmd
            status_export=$?
480
            status_check $status_export "${export_cmd}" "${status_log}"
LDOUBLEV's avatar
fix  
LDOUBLEV committed
481
        else
LDOUBLEV's avatar
LDOUBLEV committed
482
            save_infer_dir=${infer_model}
483
484
485
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
LDOUBLEV's avatar
LDOUBLEV committed
486
        func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
487
488
        Count=$(($Count + 1))
    done
MissPenguin's avatar
MissPenguin committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
elif [ ${MODE} = "cpp_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_quant_flag=(${cpp_infer_is_quant})
    for infer_model in ${cpp_infer_model_dir_list[*]}; do
        #run inference
        is_quant=${infer_quant_flag[Count]}
        func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
        Count=$(($Count + 1))
    done
507
    
tink2123's avatar
tink2123 committed
508
509
510
511
512
513
514
515
516
517
518
519
520
elif [ ${MODE} = "serving_infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    #run serving
    func_serving "${web_service_cmd}"
MissPenguin's avatar
MissPenguin committed
521

LDOUBLEV's avatar
LDOUBLEV committed
522
523


LDOUBLEV's avatar
LDOUBLEV committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
else
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
        use_gpu=${USE_GPU_KEY[Count]}
        Count=$(($Count + 1))
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do 
            for trainer in ${trainer_list[*]}; do 
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi
                
                set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
                
                # load pretrain from norm training if current trainer is pact or fpgm trainer
                if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
                    set_pretrain="${load_norm_train_model}"
                fi

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} "
                elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                else     # train with multi-machine
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}"
                fi
                # run train
                eval "unset CUDA_VISIBLE_DEVICES"
                eval $cmd
                status_check $? "${cmd}" "${status_log}"

                set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
                # save norm trained models to set pretrain for pact training and fpgm training 
                if [ ${trainer} = ${trainer_norm} ]; then
                    load_norm_train_model=${set_eval_pretrain}
                fi
                # run eval 
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
                    eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" 
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
                if [ ${run_export} != "null" ]; then 
                    # run export model
                    save_infer_path="${save_log}"
LDOUBLEV's avatar
LDOUBLEV committed
619
620
621
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
LDOUBLEV's avatar
LDOUBLEV committed
622
623
624
625
626
627
628
629
630
631
632
633
634
                    eval $export_cmd
                    status_check $? "${export_cmd}" "${status_log}"

                    #run inference
                    eval $env
                    save_infer_path="${save_log}"
                    func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
                    eval "unset CUDA_VISIBLE_DEVICES"
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do 
        done      # done with:    for autocast in ${autocast_list[*]}; do 
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then